
Æternity blockchain
The trustless, decentralized and purely functional oracle machine

January 23, 2017

v0.1

Zackary Hess
zack@aeternity.com

Yanislav Malahov
yani@aeternity.com

Jack Pettersson
jack@aeternity.com

Abstract— Since the introduction of Ethereum in 2014 there
has been great interest in decentralized trustless applications
(smart contracts). Consequently, many have tried to implement
applications with real world data on top of a blockchain. We
believe that storing the application’s state and code on-chain is
wrong for several reasons.

We present a highly scalable blockchain architecture with a
consensus mechanism which is also used to check the oracle.
This makes the oracle very efficient, because it avoids layering
one consensus mechanism on top of another. State channels
are integrated to increase privacy and scalability. Tokens in
channels can be transferred using purely functional smart
contracts that can access oracle answers. By not storing contract
code or state on-chain, we are able to make smart contracts
easier to analyze and faster to process, with no substantial loss
in de facto functionality.

Applications like markets for synthetic assets and prediction
markets can be efficiently implemented at global scale. Several
parts have proof-of-concept implementations in Erlang. Devel-
opment tools and application essentials such as a wallet, naming
and identity system will also be provided.

CONTENTS

I Introduction 1
I-A Previous Work 2

II Æternity blockchain 2
II-A Tokens, accounts and blocks 2

II-A.1 Access token, Aeon 2
II-A.2 Accounts 2
II-A.3 Name system 3
II-A.4 Block contents 3

II-B State channels 3
II-B.1 Smart contracts 3
II-B.2 Example 4

II-C Consensus mechanism 5
II-C.1 Oracles 5

II-D Governance 5
II-E Scalability 6

II-E.1 Sharding trees 6
II-E.2 Light clients 6
II-E.3 State channels and paral-

lelism 6
II-E.4 Transactions per second at

a given memory requirement 6

III Applications 6
III-A Blockchain essentials 6

III-A.1 Identities 6
III-A.2 Wallet 6
III-A.3 Proof of existence 6

III-B State channel applications 7
III-B.1 Toll API 7
III-B.2 Insured crowdfunding . . . 7
III-B.3 Cross-chain atomic swaps . 7
III-B.4 Stable value assets and

portfolio replication 7
III-B.5 Event contracts 7
III-B.6 Prediction markets 7
III-B.7 Market with batch trading

at a single price 7

IV Implementation 8
IV-A Virtual machine and contract language 8
IV-B Adoption via web-integration 8
IV-C Open source modules 8
IV-D Usability and UX design 8

V Discussion 8
V-A Limitations and tradeoffs 9

V-A.1 On-chain state 9
V-A.2 Free option problem 9
V-A.3 Liquidity loss and state

channel topologies 9
V-B Future work 9

V-B.1 Functional contract language 9
V-B.2 Multi-party channels 9

I. INTRODUCTION

The intention of this paper is to give a overview of
the Æternity blockchain architecture and possible applica-
tions. More detailed papers will be released in the future,
specifically for the consensus and governance mechanisms.
However, it should be noted that our architecture is holistic;
all components tie together and synergize, in a modular way.

The rest of this paper is broken into four parts. First, we
will introduce and discuss the fundamental theoretical ideas
that inform our architecture. Second, we will discuss the

1

mailto:zack@aeternity.com
mailto:yani@aeternity.com
mailto:jack@aeternity.com

included essential applications, other possible use cases and
give intuitions for how to use the platform as a developer.
Third, we will present the current proof-of-concept imple-
mentation, written in Erlang. We conclude with a discussion,
including possible future directions and comparisons to other
technologies.

A. Previous Work
Blockchains, first of all Bitcoin, have shown a new way

to architect value exchange on the Internet [1]. This has
been followed by a number of promising advances: Ethereum
demonstrated a way to write Turing-complete smart con-
tracts secured by a blockchain architecture [2]; Truthcoin
created tools for making oracles on blockchains [3], while
GroupGnosis and Augur showed how to make them more
efficient [4]; Casey Detrio showed how to make markets
on blockchains [5]; Namecoin showed how to make the
distributed equivalent of a domain name server [6]; Factom
showed how a blockchain that stores hashes can be used as
a proof of existence for any digital data [7].

These technologies show great promise when it comes to
providing first-class financial and legal services to anyone.
So far however, they have failed to come together to a
unified whole that actually fulfills the promise. Specifically,
all solutions so far have been lacking in at least one of the
following respects: governance, scalability, scripting safety
and cheap access to real-world data [need cit.]. Æternity aims
to improve the state of the art in all of these respects.

II. ÆTERNITY BLOCKCHAIN

We believe that the lack of scalability, scripting safety
and cheap access to real-world data of current “smart con-
tract platforms” come down to three core issues. First, the
currently prevailing stateful design makes smart contracts
written for the platform hard to analyze1, and statefulness
combined with sequential transaction ordering complicates
scalability [need cit.]. Second, the high cost of bringing real-
world data into the system in a decentralized, trustless and
reliable way complicates or outright prevents the realization
of many promising applications [need cit.]. Third, the platforms
are limited in their abilities to update themselves, in order
to adapt to new technological or economical knowledge. We
believe that each of these three problems have clear solution
paths that should be explored.

First, recent research into state channel technology sug-
gests that for many use cases, keeping state on-chain is not
necessary [need cit.]. It is very often entirely possible to store
all information in state channels, and only use the blockchain
to settle any economic results of the information exchange,
and as a fallback in the case of dispute. This suggests
an alternative approach to blockchain architecture in which
Turing-complete smart contracts exist in state channels but
not on-chain. This increases scalability since all transactions

1The difficulty of analyzing stateful contracts was very clearly demon-
strated by the re-entrance bug that brought down “The DAO”. This happened
despite the code having been audited by several of Ethereum’s creators as
well as the general community [need cit.].

become independent and can thus be processed in parallel.
Additionally, this means that contracts never write to shared
state, greatly simplifying their testing and verification. We
believe that this design emphasizes that blockchains are
about financial logic rather than data storage; there exist
decentralized storage solutions that complement blockchains
perfectly.

Second, applications such as Augur have attempted to
bring real-world data onto the blockchain in a decentral-
ized way—in the process essentially building a consensus
mechanism inside smart contracts [8], instead of utilizing
the consensus mechanism of the underlying blockchain. This
leads to inefficiencies but doesn’t increase security. The
natural conclusion from this is to generalize the blockchain’s
consensus mechanism so that it can provide information
not only on the next internal state, but also on the state
of the external world. It could thus be argued that the
blockchain’s consensus mechanism determines the result of
running what complexity theory dubs an oracle machine:
a theoretical machine that is more powerful than a Turing
machine because it has answers to some questions that can’t
necessarily be computed, such as “Who won football game
X?” [need cit.].

Third, it seems natural that the consensus mechanism
could also be used to determine the parameters of the system.
This allows it to adapt to changing external conditions, as
well as adopting new research and recent developments in
the field.

The rest of this section introduces the Æternity blockchain
in greater detail, starting with a brief overview of accounts,
tokens, names and the structure of blocks. This is followed by
an explanation of our approach to state channels and smart
contracts, and then a discussion on how the blockchain’s
consensus mechanism can be used both to create an efficient
oracle mechanism and to govern the system. Finally, we
discuss scalability from several different angles.

A. Tokens, accounts and blocks
Despite being “stateless” from the contract developer’s

point of view, the Æternity blockchain keeps track of several
predefined state components. We will now explain these, as
well as the content of each block. For simplicity, this section
assumes that every node keeps track of the whole blockchain.
Possible optimizations are described in section II-E.

A.1) Access token, Aeon: To use the blockchain is not
free, but requires that the user spends a token called aeon.
Aeon are used as payment for any resources one consumes
on the platform, as well as the basis for financial applications
implemented on the platform.

The distribution of aeon in the genesis block will be
determined by a smart contract hosted on Ethereum. Further
aeon will be created via mining.

All system fees get paid with aeon, all smart contracts
settle in aeon.

A.2) Accounts: Each account has an address and a bal-
ance of aeon and also a nonce which increases with every
transaction and the height of its last update. Each account

2

also has to pay a small fee for the amount of time it is
open. The costs of creating and keeping accounts prevents
spam and disincentivizes state-bloat. The reward for deleting
accounts incentivizes the reclaiming of space.

A.3) Name system: Many blockchain systems suffer from
unreadable addresses for their users. In the vein of Aaron
Swartz’ work and Namecoin, Æternity features a name
system that is both decentralized and secure, while still
supporting human-friendly names [9]. The blockchain’s state
includes a mapping from unique human-friendly strings to
fixed-size byte arrays. These names can be used to point to
things such as account addresses on Æternity, or hashes e.g.
of Merkle trees.

A.4) Block contents: Each block contains the following
components:

• The hash of the previous block.
• A Merkle tree of transactions.
• A Merkle tree of accounts.
• A Merkle tree of names.
• A Merkle tree of open channels.
• A Merkle tree of oracles which haven’t answered their

respective questions.
• A Merkle tree of oracle answers.
• A Merkle tree of Merkle proofs.
• The current entropy in the random number generator.
The hash of the previous block is required to maintain an

ordering of the blockchain. The transaction tree contains all
transactions that are included in the current block. With the
exception of the consensus vote tree, all the trees are fully
under consensus: if a tree is changed from one block to the
next, this change has to be due to a transaction in the new
block’s transaction tree, and a Merkle proof of the update
has to be included in the block’s proof tree. The purpose of
the three remaining trees will hopefully become clear in the
following sections.

B. State channels

One of the most interesting developments in the
blockchain space lately is that of state channels. They operate
on the basic principle that in most cases, only the people
affected by a transaction need to know about it. In essence,
the transacting parties instantiate some state on a blockchain,
e.g. an Ethereum contract or a Bitcoin multisig. They then
simply send signed updates to this state between each other.
The key point is that either one of them could use these
to update the state on the blockchain, but in most cases,
they don’t. This allows for transactions to be conducted
as fast as information can be transmitted and processed
by the parties, instead of them having to wait until the
transaction has been validated—and potentially finalized—
by the blockchain’s consensus mechanism.

On Æternity, the only state update that can be settled on
the blockchain is a transfer of aeon, and the only aeon that
can be transferred are the ones that the transacting parties
already deposited into the channel. This makes all channels
independent from each other, which has the immediate bene-

1 macro Gold f870e8f615b386aad5b953fe089 ;
2

3 Gold oracle
4 if 0 1000 else 0 0 end
5 0

Fig. 1. A simple contract encoding a bet on the price of gold. The language
used is the Forth-like Chalang, which will be presented in section IV-A.

fit that any transactions related to channels can be processed
in parallel, greatly improving transaction throughput.

The blockchain is only used to settle the final outcome
or to resolve conflicts that arise, roughly analogous to the
judicial system. However, because the blockchain’s behavior
will be predictable, there is no gain in disputing the intended
result of a state channel; malicious actors are incentivized
to behave correctly and only settle the final state on the
blockchain. All taken together, this increases transaction
speed and volume by several orders of magnitude, as well
as privacy.

B.1) Smart contracts: Despite that the only state that
can be settled on-chain is a transfer of aeon, Æternity
still features a Turing-complete virtual machine that can
run “smart contracts”. Contracts on Æternity are strictly
agreements that distribute funds according to some rules,
which stands in stark contrast to the entity-like contracts of
e.g. Ethereum. Two of the more notable practical differences
is that by default, only the involved parties know about
a given contract, and only parties that have an open state
channel can create a valid contract. If the parties agree to a
contract, they sign it and keep copies for future reference.
It is only submitted to the blockchain if its outcome is
disputed, in which case the code is only ever stored as part
of the submitted transaction, never in any other state. If this
happens, the blockchain distributes the tokens according to
the contract and closes the channel.

As an example, fig. 1 shows a very simple contract that
encodes a bet on the price of gold at a certain time. On line 1,
the macro Gold saves the identifier of the oracle in question,
which will return true if the price of gold is below $38/g on
December 1st, 2016. The body of the contract is displayed
on lines 2-4: we first push the gold oracle’s identifier to
the stack and call it using oracle, which will leave the
oracle’s answer on the top of the stack. We use this to do a
conditional branching: if the oracle returns true, we push
0 and 1000 to the stack, indicating that 0 aeon should be
burned and 1000 aeon should go to the first participant in
the channel. Otherwise, we push 0 and 0, with the second 0
indicating that the other participant receives all aeon in the
channel. Finally we push 0, which is taken to be the nonce
of this channel state. In actual usage, the nonce would be
generated at deployment.

One important thing to note is that contracts on Æternity
don’t maintain any state of their own. Any state is maintained
by the transacting parties and submitted as input at execution.
Every contract is essentially a pure function that takes some

3

1 : hashlock
2 swap
3 hash
4 == ;

Fig. 2. A simple hashlock.

1 macro Commitment a9d7e8023f80ac8928334 ;
2

3 Commitment hashlock call
4 if 0 100 else 0 50 end
5 1

Fig. 3. Using the hashlock to trustlessly send tokens through a middleman.

input and gives a new channel state as output2. The benefits
of using pure functions in software development in general,
and in the development of financial applications in particular,
has been extensively documented in academia and industry
for decades [10][need cit.].

a) Contract interaction and multi-step contracts:
Even though all contracts are stateless and execute inde-
pendently of each other, contract interaction and statefulness
can still be achieved through hashlocking [need cit.]. A simple
hashlock is shown in fig. 2. On line 1, we define a function
called hashlock that expects the stack to contain a hash
h and a secret s. It swaps them on line 2, in order to hash
the secret on line 3, before calling the equality operator on
hash(v) and h on line 4. This returns true if the secret is a
preimage of the hash. This function can be used to predicate
the execution of code branches in different contracts on the
existence of the same secret value.

As a simple example usage, hashlocks make it possible for
users that don’t share a state channel to trustlessly send each
other aeon, as long as there is a path of channels between
them. For example, if Alice and Bob have a channel and
Bob and Carol have a channel, then Alice and Carol can
transact through Bob. They do this by creating two copies
of the contract shown in fig. 3, one for each channel. The
Commitment on line 1 is the hash of a secret that Alice
chooses. On line 3 we push it to the stack and call the
hashlock function. Which branch of the if that gets
executed depends on the return value of hashlock. Once
these contracts have been signed by all parties, Alice reveals
the secret, allowing Bob and Carol to use it to claim their
aeon.

Hashlocking can also be used to e.g. play multi-player
games in the channels, as shown in fig. 4. Everyone makes
a channel with the game manager, which publishes the same
contract to every channel. Say we are in game state 32,

2It should be noted that since contracts can read answers from oracles
and some environment parameters, they aren’t completely pure functions.
However, oracle answers never change once they’ve been provided and
can be argued to be due to the computational richness of the oracle
machine, rather than being an impurity. Environment parameters are deemed
a “necessary evil” and will ideally be compartmentalized appropriately by
high-level languages.

1 macro Commitment a9d7e8023f80ac8928334 ;
2

3 Commitment hashlock call
4 if State33 else State32 end
5 call

Fig. 4. A simplified example of using the hashlock to play a multi-player
game in channels.

defined by the function State32, and we want to trustlessly
simultaneously update all the channels to state 33. When the
game manager reveals the secret, it causes all the channels
to update at the same time.

b) Metered execution: Contract execution is metered
in a way similar to Ethereum’s “gas”, but Æternity uses two
different resources for its metering, one for time and one for
space. Both of these are paid for using aeon by the party
that requests the execution.

This could be seen as undesirable, because it is probably
another party that is causing the need for the blockchain to
resolve the dispute in the first place. However, as long as
all money in the channel is not used for betting, this can
be effectively nullified in the contract code, since it has the
ability to redistribute funds from one party to the other. It
is in fact generally good practice to avoid using all funds
in a channel to transact, because it disincentivizes the losing
party to cooperate when closing the channel.

B.2) Example: Let’s bring all of these ideas down to
earth. In practice, if Alice and Bob want to transact using
a state channel on Æternity, they go through the following
procedure:

1) Alice and Bob sign a transaction that specifies how
much money each of them is depositing into the
channel, and publish it to the blockchain.

2) Once the blockchain has opened the channel, they can
both create new channel states, send them between
each other and sign them. Channel states can be either
a new distribution of the funds in the channel or a
contract that determines a new distribution. Each of
these channel states has an increasing nonce and are
signed by both parties, so if a dispute arises, the latest
valid state can be submitted to the blockchain, which
enforces it.

3) The channel can be closed in two different ways:
a) If Alice and Bob decide that they have finished

transacting and agree on their final balances,
they both sign a transaction indicating this and
submit it to the blockchain, which will close the
channel and redistribute the money in the channel
accordingly.

b) If Alice refuses to sign a closing transaction for
any reason, Bob can submit the last state that both
of them signed and request to have the channel
closed using this state. This starts a countdown.
If Alice believes that Bob is being dishonest,
she has the opportunity to publish a state with

4

a higher nonce that both of them have signed
before the countdown finishes. If she does so, the
channel closes immediately. Otherwise it closes
when the countdown has finished.

C. Consensus mechanism

Æternity uses a hybrid Proof-of-Work and Proof-of-Stake
consensus mechanism. The block-order will be determined
via Proof-of-Work. Certain system variables will be deter-
mined via on-chain prediction market system, which allows
the users to participate and bring in their knowledge. For
the PoW algorithm we currently favor a variant of Tromp’s
Cuckoo Cycle, one which is memory bound, and also is
an ”indirectly useful Proof-of-Work”, as it requires less
electricity to run, but instead has another limiting factor,
the one of memory latency availability. This also makes it
feasible to mine with a smart phone.

Tromp writes about his work:

”[Cuckoo Cycle is] an instantly verifiable memory
bound PoW that is unique in being dominated by
latency rather than computation. In that sense, min-
ing Cuckoo Cycle is a form of ASIC mining where
DRAM chips serve the application of randomly
reading and writing billions of bits.
When even phones charging overnight can mine
without orders of magnitude loss in efficiency,
not with a mindset of profitability but of playing
the lottery, the mining hardware landscape will
see vast expansion, benefiting adoption as well as
decentralization.”

Preview: The consensus mechanism has a somewhat non-
standard role in Æternity. In addition to agreeing on new
blocks for the blockchain, it also agrees on both answers to
oracle questions and the values of the system’s parameters.
In particular, the consensus mechanism can change itself.
However, it should be noted that this is not entirely unprob-
lematic. For example, if a simple proof-of-work mechanism
was used, it would be rather cheap to bribe the miners to
corrupt the oracle. Therefore Æternity is going to use a novel
hybrid Proof-of-Stake Proof-of-Work algorithm, leveraging
the benefits of both. Independently from this, PoW is going
to be used to issue new aeon tokens.

Sidenote: Originally Aeternity intended to be a 100 percent
proof-of-stake blockchain. We don’t think anymore that a
decentralized 100 percent PoS system is possible.

C.1) Oracles: A crucial feature for most contracts,
whether encoded as text or as code, is the ability to refer to
values from the environment, such as the prices of different
goods or whether a certain event occurred or not. A smart
contract system without this ability is essentially a closed
system and arguably not very useful. This is a generally ac-
cepted fact and there are already several projects that attempt
to bring external data into the blockchain in decentralized
way [8]. However, to decide whether a supplied fact is true
or not, these essentially require the implementation of a new
consensus mechanism on top of the consensus mechanism.

Running two consensus mechanisms on top of each other
is as expensive as running both separately. Additionally, it
doesn’t increase security, because the least secure one can
still be attacked and made to produce “false” values. Thus,
we propose to conflate the two consensus mechanisms into
one, essentially reusing the mechanism that we use to agree
on the state of the system, to also agree on the state of the
outside world.

The way that this works is as follows. Any aeon-holder
can launch an oracle by committing to answering a yes/no-
question. When doing so, they also need to specify the
timeframe during which the question can be answered, which
can start now or some time in the future. The user that
launches the oracle is required to deposit aeon in proportion
to the length of the timeframe, which will be returned if the
user supplies an answer that gets accepted as truth, otherwise
it is burned. The blockchain generates a unique identifier for
the oracle that can be used to retrieve the answer once it is
available.

Once the time comes for the question to be answered, the
user who launched the oracle can supply an answer for free.
Once the oracle launcher has supplied an answer or until a
certain amount of time has passed, any other users can submit
counter-claims by depositing the same amount of aeon. If
no counter-claims have been submitted by the end of the
timeframe, the answer supplied by the user that launched the
oracle is accepted as truth, and the deposit is returned. If any
counter-claims are submitted, then the consensus mechanism
for blocks will be used to answer the oracle. This is more
expensive, but since we know we can take at least one of
the two safety deposits, we can use it.

D. Governance
Governance of blockchain-based systems has been a big

problem in the past. Whenever a system upgrade needs to be
done, this requires a hard fork, which usually leads to big
discussions among all value holders. Even simple things, like
correcting an arbitrarily set variable in the source code, as
we have seen with the block size debate in Bitcoin, seem
to be very hard in a system where the users’ incentives are
not aligned with the decision makers, and where there is
no clear upgrade path. We have also seen more complicated
governance decisions, like fixing a single smart contract bug
in “The DAO”, which required quick intervention by system
developers.

The primary problem of these systems is easily
identifiable—the decision-making process for a protocol up-
grade or change is not well defined and lacks transparency.
Æternity’s governance system is part of the consensus. It uses
prediction markets to function as efficiently and transparently
as possible.

Moreover, the consensus mechanism is defined by a num-
ber of variables that determine how the system functions
and that are being slightly updated by each new block. From
how much it costs to make transactions or ask an oracle, to
modifications of fundamental parameter values like the block
time.

5

By having prediction markets about the variables that
define the protocol, the users can learn how to efficiently
improve the protocol. By having predictions markets about
potential hard forks, we can help the community come to
consensus about which version of the code to use. Each user
chooses for itself which metric it seeks to optimize, but a
simple default strategy would be to maximize the value of
its holdings.

E. Scalability
E.1) Sharding trees: The architecture that has been pre-

sented thus far is highly scalable. It is possible to run the
blockchain even when each user only keeps track of the
part of the blockchain state that they care about and ignores
everyone else’s data. At least one copy of the state is needed
for new users to be certain about the substate that they care
about, but we can shard this data across arbitrarily many
nodes so that each node’s load is arbitrarily small. Merkle
trees are used to prove that a substate is part of the state
[11]. It is easy to imagine a scenario where certain nodes
specialize on keeping track of the trees and get paid for
inserts and look-ups.

E.2) Light clients: Light clients don’t download the entire
blocks. First the user gives their client a hash in the history
of the fork they prefer, a technique also known as weak
subjectivity [12]. Then the client knows only to download
forks that include a block with that hash. The client only
downloads the headers of the blocks. The headers are much
smaller than full blocks; very few transactions are processed.
For simplicity, we made no mention of the block headers
when discussing the block structure in section II-A.4, but
they contain the following:

• The hash of the previous block.
• The root hash of all of the state trees.
E.3) State channels and parallelism: State channels

have immense throughput and most transactions inside them
are never executed or even recorded on the blockchain.
Additionally, the channels don’t write to any shared state
on-chain, so all transactions that actually do get recorded
on the blockchain can be processed in parallel. Given that
most consumer hardware sold today has at least four pro-
cessing cores, this has the immediate effect that transaction
throughput is multiplied by roughly a factor of 4.

Furthermore, the fact that there will never be any complex
concurrent interaction suggests that sharding this blockchain
architecture should be relatively easy. Since blockchain
sharding is still fairly experimental, we have deliberately
chosen not to pursue any sharding techniques in the initial
design of Æternity. However, if this changes in the future,
Æternity should be one of the easiest blockchains to shard.

E.4) Transactions per second at a given memory re-
quirement: The variables that define the protocol are all
constantly being updated by the consensus. From their initial
default values, we can calculate the initial default rate of
transactions per second.

1 Note that this is a draft and will likely

2 change.
3

4 We define the following variables for the
following calculations:

5

6 B = block_size in bytes
7 F = blocks_till_finality
8 R = time_till_finality in seconds
9 T = transaction size in bytes

10

11 transactions per second = B * F / (T * R)
12

13 B = 1000000 bytes = 1 megabyte per block
14 F = 24*60*2 blocks per day
15 R / F = 30 seconds per block
16 R = 24*3600 seconds per day
17 T = 1000 bytes per transaction
18

19 1000000 * 24*60*2 / 1000 / 24*3600
20 = 1000000 / 1000 / 30
21 = ca. 32 transactions per second (fast

enough to sign up every human within 8
years)

To operate a node, we need to keep a copy of all the
blocks since finality, and we need to be able to record 100
times more information, in case there is an attack. Estimating
that finality is 2 days, then there would be 5760 blocks till
finality. So the memory requirement is 5760 * one megabyte
* 100 = 576000 megabytes = 576 gigabytes. When there
isn’t an attack happening, one would only need about 5.76
gigabytes to store the blocks.

III. APPLICATIONS

The stateless nature of the Æternity smart contracts makes
it easy to build the following applications on Æternity’s
blockchain. It is especially suitable for high-volume use-
cases.

A. Blockchain essentials

Blockchain essentials are necessary primitives like aeon,
wallets, names and related concepts. They modularize
reusable components which can be used as application foun-
dations and can be improved on.

A.1) Identities: Each account will have an associated
unique ID number. Users can register unique names, and
link names to the Merkle-root of a data structure. The
data structure can contain one’s unique ID as well as other
information about one’s account. We aim to use Schema.org’s
JSON format to represent things like persons or companies
[13].

A.2) Wallet: A wallet is a piece of software that is used
to interact with Aeternity. A wallet manages private keys for
the aeon and creates and signs transactions. One can use
the wallet to send channel transactions, and use apps in the
channel network.

A.3) Proof of existence: One transaction type allows for
the publishing of the hash of any data. System participants
can use the headers to prove that the data existed at that
point in time.

6

B. State channel applications
Smart contracts in state channels are perfect for micro-

services on the web that require a high transaction through-
put.

B.1) Toll API: Most APIs existing today are publicly
available for anyone to call, or else they are secured by a
username-password–scheme or unique access tokens. Pay-
ment channels allow for a new kind of API, where one
pays for every call to the API, possibly every HTTP-request.
Paying to access an API solves DDoS problems, and it makes
it easier to build high-quality APIs that are always available.
API responses that require a payment are fundamental for the
creation of as of yet impossible types of businesses and can
play an important role in the emergence of the decentralized
economy. They create incentives for information owners to
make otherwise private data publicly available.

B.2) Insured crowdfunding: We can implement insured
crowdfunding using dominant assurance contracts [need cit.].
These are smart contracts that are used to raise money for a
public good, like a new bridge, a school or a market.

Dominant assurance contracts differ from traditional as-
surance contracts like Kickstarter, in that they make it a
dominant strategy to participate. If the good is not funded,
all participants get their aeon back plus interest, so they are
insured against reducing their liquidity without receiving the
good. Using an oracle, we can ensure that the provider of
the good or service only gets paid if the good or service is
actually provided.

B.3) Cross-chain atomic swaps: Cross chain atomic
swaps allow for trustless exchange of aeon for bitcoins [14],
[15]. These can be implemented using a hashlock, that locks
the transactions on both blockchains under the same value.

B.4) Stable value assets and portfolio replication: We
can use smart contracts to program synthetic assets that stay
nearly the same price as a real world asset. For example,
we could make an asset that stays the same price as gold.
Synthetic derivatives are created in equal and opposite pairs.
For one user to have an asset that moves with gold, a different
user will have to have an asset that move inversely to gold.
For example, Alice could make a contract with Bob so that
Alice owns 1 gram of gold. Out of the money in the contract,
one gram of gold worth of aeon will go to Alice, and the
leftover money goes to Bob. The contract has an expiration
date when the price of gold will be measured, and the funds
distributed to Alice and Bob accordingly.

B.5) Event contracts: Event contracts pay when an event
happens and don’t pay when an event does not happen, as
per the oracle’s telling. Apart from being interesting in them-
selves, these can be used by several different applications:

a) Insurances: We can use event contracts to imple-
ment insurances. For example, expensive music event tickets
can become worthless if the weather goes bad. However, if
the concert-goer receives money if the oracle decides that
it rained on the day of the event, the investment can be
protected so that one can afford to find an emotionally-
adequate alternative. Slightly more seriously, farmers are
often interested in the total number of inches of rain in a

season. We can insure them against their crops wilting from
dryness.

b) Whistleblowing: Event contracts can also be used
to incentivize revealing sensitive information. For example,
we could bet on the event “Information indicating that
Company A has used illegal pesticides was released on or
before January 24th, 2017”. Any person with access to such
information would be incentivized to first bet that the event
will happen and then release it.

B.6) Prediction markets: A prediction market works by
letting users bet on whether a future event will happen. From
the price of the bets we can predict the future likelihood [3],
[8], [16]. They are the most accurate way to measure the
future at a given price [need cit.]. Once the event has happened,
the market is settled using the oracle.

As noted in section II-D, we can for example use predic-
tion markets to predict which updates to the software will be
beneficial, and which will be harmful. We can also use them
to estimate how much candidates in an election will actually
be able to accomplish, so lies and baseless promises can be
detected more easily.

Fig. 5. Multidimensional prediction market.

a) Multidimensional prediction markets: Multidimen-
tional prediction markets allow us to predict the correlation
between possible future events. So for example, one could
predict that if Alice is elected leader, the price of potatoes
will go down, and that if Bob wins, the price will go up.
One could learn that if Google uses plan A for the next 3
months, that it will probably earn more money, and that if it
uses plan B, it will probably earn less. Or, as in fig. 5, we
can see that if Alice would be elected president, there is a
high likelihood of the price of potatoes being rather low.

B.7) Market with batch trading at a single price: There
are two approaches available to attackers that want to rob
aeon from a market. They can take advantage of the market
being split in time, or they can take advantage of it being
split in space.

• If the market is split in space, then the attacker does
arbitrage. He simultaneously makes trades in both mar-
kets at once so that his risk cancels out and he earns a

7

profit.
• If the market is split in time, then the attacker front-

runs the market. He reads the transactions coming into
the market and creates buy and sell orders immediately
before and after.

Fig. 6. The black line is the demand curve, the red line is the supply
curve. The sells in red are the same size as the buys in red. The vertical
line is the price the market maker selected. Everyone willing to buy at a
higher price traded at that price, everyone willing to sell at a lower price
traded at that price.

To combine markets in space, everyone should use the
same market maker. To combine markets in time, we need
to have trading done in batches, at single price. The market
maker needs to commit to each person what price he decided,
and if anyone can find contradictory commitments from the
market maker, then all of his customers should be able to
drain all of his channels. If the market maker commits to a
fair price, then he will match the same volume of buyers and
sellers together, as fig. 6 shows. Otherwise, he will end up
in a situation similar to fig. 7, thus taking a large risk.

Fig. 7. The black is much bigger than the red. The market maker is selling
many more shares than it is buying, thus taking on a lot of risk.

IV. IMPLEMENTATION

Most key concepts already have proof-of-concept imple-
mentations in Erlang. This includes the blockchain itself,
the contract language and VM, the oracle and governance
mechanisms, as well as an old version of the consensus
mechanism. We have used Erlang/OTP because it makes it
easy to write code that can respond to many requests in
parallel and does not crash. The servers with the highest up-
time in the world are based on Erlang. It has been used for
industrial applications for 30 years, proving itself to be a
reliable and stable product.

A. Virtual machine and contract language
The virtual machine is stack-based and similar to Forth

and Bitcoin’ scripting language, although in comparison to
the latter, it is rather rich. The VM supports functions instead
of gotos, making its semantics relatively simple to analyze.
A list of the VM’s opcodes can be found on our Github3.

Additionally, there exists a higher-level Forth-like lan-
guage called Chalang, which compiles to bytecode for the
VM. It supports macros and variable names, but keeps the
stack-based execution model [17]. Examples of Chalang code
can also be found on our Github4.

B. Adoption via web-integration
The web is the most popular application platform. We

will provide easy-to-use web-development tools, such as JS-
libraries and JSON-APIs for the core features of the Æternity
blockchain.

C. Open source modules
In order to be easily re-used for private blockchain con-

sortium and other use-cases, the software will be written in
MIT-licensed modules, such as a consensus module, that can
be adapted to specific needs.

D. Usability and UX design
Frictionless human interaction will be a big focus of our

development efforts. More specifically, we will make sure
that who controls the identity, keys and transactions is clearly
established. Also, offering easy access via web-gateways will
be a central focus of future development. Users participating
in prediction markets via a Tinder-like (swipe left/right)
mobile interface, and simple web-wallets that can be easily
integrated in a website through an iframe will be the new
norm.

V. DISCUSSION

We have provided an explanation of how to architect
a fundamentally more efficient value transfer system. The
described system is in fact a global oracle machine that can
be used to provide decision making services at global scale.
In particular, all the applications proposed in section III can
be built easily and efficiently on top of Æternity.

3https://github.com/aeternity/chalang/blob/
master/opcodes.md

4https://github.com/aeternity/chalang/tree/
master/examples

8

https://github.com/aeternity/chalang/blob/master/opcodes.md
https://github.com/aeternity/chalang/blob/master/opcodes.md
https://github.com/aeternity/chalang/tree/master/examples
https://github.com/aeternity/chalang/tree/master/examples

However, our approach has both fundamental limitations
and avenues for improvement. These are discussed here.

A. Limitations and tradeoffs
While we do believe that the tradeoffs made in our

architecture are reasonable given the resulting performance
increase in other areas, Æternity is not a catch-all solution
for decentralized applications. It should rather be viewed as
a synergistic complement to existing technologies. There are
several caveats that one need to be aware of.

A.1) On-chain state: Despite having many advantages,
Æternity’s lack of programmable state makes it unfit for
applications that require a custom state to be under con-
sensus. For example, this includes DAOs as they are usually
conceived, custom name systems and subcurrencies which
are not tied to the value of an underlying asset.

A.2) Free option problem: If Alice and Bob have a
channel and Alice signs a contract, she essentially gives Bob
a free option when she sends it to him: Bob can choose to
sign and return (i.e. activate) the contract at any time in
the future. Often this is not what is intended. To avoid this
problem, channel contracts aren’t immediately activated with
the full amount. They are divided up in time or space. Both
participants would sign up for the contract in small intervals
so that neither user ever offers a large free option to the
other.

For example, if the parties want to bet 100 aeon, then
they might sign up to it in 1000 steps that each increase the
bet by 0.1 aeon. This would require about 1000 messages
to pass, 500 in each direction, which is cheap enough since
the contract is never submitted to the blockchain. As another
example, if one wanted to make a financial asset that would
last for 100 days, one might sign up in 2400 steps of one
hour each. This would require about 2400 messages to pass,
1200 in each direction.

A.3) Liquidity loss and state channel topologies: When
composing channels using hashlocks as demonstrated in
section II-B.1, any middlemen have to lock up at least twice
as many aeon as will be transmitted through them. For
example, if Alice and Carol want to transact through Bob,
Bob will act as Carol when interacting with Alice, and vice-
versa.

Since this is expensive for Bob, he would most likely
earn a fee as compensation. If Alice and Carol expect to
conduct many trades between each other, they can avoid this
by creating a new channel and trustlessly moving the active
contracts to the new channel using a hashlock.

Still, since keeping an extra channel open impacts one’s
liquidity negatively, going through middlemen is expected
to be desirable in many cases, especially in cases where
the parties don’t expect to trade a lot in the future. Thus, a
channel topology where certain rich users make money from
trustlessly transmitting transactions between other users is
expected to emerge.

It should be noted that this does not constitute a single
point of failure, since we do not trust these transaction
transmitters with anything. If a transmitter goes offline before

the secret to a hashlock has been revealed, the transaction
doesn’t go through. If it goes offline afterwards, the only
possible “negative” effect is that the transmitter is not able
to claim its aeon.

B. Future work

There are several possible ways to improve on the current
architecture.

B.1) Functional contract language: A reasonable future
direction would be to experiment with high-level languages
that adhere more closely to the functional paradigm. Keep-
ing track of an implicit stack is generally error-prone and
arguably not suitable for a high-level, developer-facing lan-
guage. This should be rather easy given that programs are
already pure functions (modulo some environment variables),
and would greatly simplify both development and formal
verification of contracts. If this is done, it could also make
sense to revise the VM to be tightly coupled with the new
language, to make the compilation less error-prone and less
dependent on trust in the developers. Ideally, the translation
from surface language to VM code would simply be a direct
transcription of peer-reviewed research, though pragmatic
concessions will likely have to be made.

B.2) Multi-party channels: Currently, all channels on
Æternity are limited to two parties. While multi-party chan-
nels can de facto be achieved through hashlocking, this can
be expensive. Hence, we plan to investigate the possibility
of adding support for n-party channels, with a m-of-n
settlement mechanism.

GLOSSARY

Blockchain A distributed, tamper-proof database with me-
tered access. The database is defined by a growing list of
hash-linked blocks and can have any rules for appending
them.

Aeon An aeon represents an unit of account and an access
right to the Æternity blockchain. It is transferable.

Transaction A message from a user to the blockchain.
This is how users can use their currency to access the
blockchain.

State Channel A relationship between two users recorded
on the blockchain. It enables users to send aeon back
and forth, and to create trustless smart contracts between
them that are enforced and settled by the blockchain.

Hash A hash takes as input a binary of any size. It gives
a fixed sized output. The same input always hashes to
the same output. Given an output, one cannot calculate
the input.

Hashlocking This is how we connect pairs of channels to
make smart contracts that involve more than 2 people.
A secret is referenced by it’s hash. When the secret is
revealed, it can update multiple channels at the same
time.

Governance A well-defined process of making decisions for
the future protocol(s) of the blockchain.

9

Oracle A mechanism that tells the blockchain facts about
the world we live in. Using oracles users can predict the
outcome of events, external to the blockchain system.

Value-Holder An user who owns aeon, or an financial
derivative in the system.

Validator A validator is an user who participates in the
consensus mechanism. In the case of Æternity, every
value-holder can participate.

ACKNOWLEDGMENTS
Thanks to Vlad, Matt, Paul, Dirk, Martin, Alistair, Devon

and Ben for proof-reading. Thanks to these and lots of other
people for insightful discussions.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2008. [Online]. Available: https : / /
bitcoin.org/bitcoin.pdf.

[2] V. Buterin, “Ethereum: A next-generation smart con-
tract and decentralized application platform,” 2014.
[Online]. Available: https : / / github . com /
ethereum/wiki/wiki/White-Paper.

[3] P. Sztorc, “Market empiricism,” [Online]. Available:
http://bitcoinhivemind.com/papers/1_
Purpose.pdf.

[4] M. Liston and M. Köppelmann, “A visit to the ora-
cle,” 2016. [Online]. Available: https://blog.
gnosis.pm.

[5] C. Detrio, “Smart markets for smart contracts,” 2015.
[Online]. Available: http://cdetr.io/smart-
markets/.

[6] Namecoin wiki, 2016. [Online]. Available: https:
//wiki.namecoin.org/index.php?title=
Welcome.

[7] P. Snow, B. Deery, J. Lu, et al., “Factom: Business
processes secured by immutable audit trails on the
blockchain,” 2014. [Online]. Available: http : / /
bravenewcoin.com/assets/Whitepapers/
Factom-Whitepaper.pdf.

[8] J. Peterson and J. Krug, “Augur: A decentralized,
open-source platform for prediction markets,” 2014.
[Online]. Available: http : / / bravenewcoin .
com / assets / Whitepapers / Augur - A -
Decentralized-Open-Source-Platform-
for-Prediction-Markets.pdf.

[9] A. Swartz, “Squaring the triangle: Secure, decentral-
ized, human-readable names,” 2011. [Online]. Avail-
able: http://www.aaronsw.com/weblog/
squarezooko.

[10] T. Hvitved, “A Survey of Formal Languages for
Contracts,” in Formal Languages and Analysis of
Contract-Oriented Software, 2010, pp. 29–32. [On-
line]. Available: http : / / www . diku .
dk / hjemmesider / ansatte / hvitved /
publications/hvitved10flacosb.pdf.

[11] R. C. Merkle, “Protocols for public key cryptosys-
tems,” in IEEE Symposium on Security and Privacy,
1980.

[12] V. Buterin, “Proof of stake: How I learned to
love weak subjectivity,” 2014. [Online]. Available:
https://blog.ethereum.org/2014/11/
25/proof- stake- learned- love- weak-
subjectivity/.

[13] “Schema.org schemas,” 2016. [Online]. Available:
http://schema.org/docs/schemas.html.

[14] “Atomic-cross-chain-trading,” 2016. [Online]. Avail-
able: https : / / en . bitcoin . it / wiki /
Atomic%5C_cross-chain%5C_trading.

[15] “Interledger,” 2016. [Online]. Available: https://
interledger.org/.

[16] K. J. Arrow, R. Forsythe, M. Gorham, et al., “The
promise of prediction markets,” Science, 320 2008.
[Online]. Available: http://mason.gmu.edu/
˜rhanson/PromisePredMkt.pdf.

[17] Z. Hess, “Chalang,” 2016. [Online]. Available:
https://github.com/aeternity/chalang.

10

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://bitcoinhivemind.com/papers/1_Purpose.pdf
http://bitcoinhivemind.com/papers/1_Purpose.pdf
https://blog.gnosis.pm
https://blog.gnosis.pm
http://cdetr.io/smart-markets/
http://cdetr.io/smart-markets/
https://wiki.namecoin.org/index.php?title=Welcome
https://wiki.namecoin.org/index.php?title=Welcome
https://wiki.namecoin.org/index.php?title=Welcome
http://bravenewcoin.com/assets/Whitepapers/Factom-Whitepaper.pdf
http://bravenewcoin.com/assets/Whitepapers/Factom-Whitepaper.pdf
http://bravenewcoin.com/assets/Whitepapers/Factom-Whitepaper.pdf
http://bravenewcoin.com/assets/Whitepapers/Augur-A-Decentralized-Open-Source-Platform-for-Prediction-Markets.pdf
http://bravenewcoin.com/assets/Whitepapers/Augur-A-Decentralized-Open-Source-Platform-for-Prediction-Markets.pdf
http://bravenewcoin.com/assets/Whitepapers/Augur-A-Decentralized-Open-Source-Platform-for-Prediction-Markets.pdf
http://bravenewcoin.com/assets/Whitepapers/Augur-A-Decentralized-Open-Source-Platform-for-Prediction-Markets.pdf
http://www.aaronsw.com/weblog/squarezooko
http://www.aaronsw.com/weblog/squarezooko
http://www.diku.dk/hjemmesider/ansatte/hvitved/publications/hvitved10flacosb.pdf
http://www.diku.dk/hjemmesider/ansatte/hvitved/publications/hvitved10flacosb.pdf
http://www.diku.dk/hjemmesider/ansatte/hvitved/publications/hvitved10flacosb.pdf
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
https://blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity/
http://schema.org/docs/schemas.html
https://en.bitcoin.it/wiki/Atomic%5C_cross-chain%5C_trading
https://en.bitcoin.it/wiki/Atomic%5C_cross-chain%5C_trading
https://interledger.org/
https://interledger.org/
http://mason.gmu.edu/~rhanson/PromisePredMkt.pdf
http://mason.gmu.edu/~rhanson/PromisePredMkt.pdf
https://github.com/aeternity/chalang

	Introduction
	Previous Work

	Æternity blockchain
	Tokens, accounts and blocks
	Access token, Aeon
	Accounts
	Name system
	Block contents

	State channels
	Smart contracts
	Example

	Consensus mechanism
	Oracles

	Governance
	Scalability
	Sharding trees
	Light clients
	State channels and parallelism
	Transactions per second at a given memory requirement

	Applications
	Blockchain essentials
	Identities
	Wallet
	Proof of existence

	State channel applications
	Toll API
	Insured crowdfunding
	Cross-chain atomic swaps
	Stable value assets and portfolio replication
	Event contracts
	Prediction markets
	Market with batch trading at a single price

	Implementation
	Virtual machine and contract language
	Adoption via web-integration
	Open source modules
	Usability and UX design

	Discussion
	Limitations and tradeoffs
	On-chain state
	Free option problem
	Liquidity loss and state channel topologies

	Future work
	Functional contract language
	Multi-party channels

