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OVERVIEW	
	 	

The	 arrival	 of	 the	 blockchain	 technology	 introduced	 the	world	 of	 decentralization,	 therefore,	

challenging	our	preconceived	perspectives	of	the	current	social,	political,	and	economic	systems,	

most	notably,	the	central	banking	system.		

	 	

This	technology,	however,	does	have	several	shortcomings	regarding	performance,	ease	of	use,	

and	service	quality.	HashNET	consensus	uses	"redundancy	reduced	gossip"	and	"virtual	voting"	

protocols	based	on	a	distributed	computation	and	algorithms	from	theoretical	computer	science	

which	provides	a	fair	and	fast,	byzantine	fault	tolerant	consensus	algorithm.	It	is	a	new	consensus	

substitute	platform	inspired	by	the	innovative	development	of	Hashgraph	methodology,	and	is	

designed	to	run	on	a	non-permissioned	(public)	network	thereby	reaching	a	larger	community.		

	

INFORMATION	TRANSFER	SOLUTION	
 
HashNET	 provides	 a	 novel	 solution	 to	 computational	 and	 communicational	 difficulties	 of	

maintaining	large-size	public	distributed	ledgers.	The	key	innovation	is	our	efficient	asynchronous	

distributed	consensus	protocol	on	an	appropriately	designed	directed	acyclic	network	structure.	

Our	consensus	protocol	belongs	to	a	class	of	gossip-based	protocols,	which	provide	advantages	

over	 structure-based	 group	 communication	 algorithms	 as	 they	 can	 handle	 large	 group	 sizes,	

sporadic	sources,	high	user	churns,	and	random	network	failures	(for	the	details	of	the	theoretical	

support,	see,	e.g.,	[1,	2]).	

	

To	 ensure	 history	 immutability	 through	 time,	 which	 is	 an	 important	 property	 for	 public	

distributed	 ledgers,	 network	 nodes	 are	 connected	 using	 hash	 pointers	 ([3]	 provides	 an	

introductory	technical	description).	It	is	well	established	(e.g.,	[4,5])	that	as	long	as	the	selected	

hash	function	is	secure,	already	agreed	upon	history	cannot	be	changed	retroactively.	

	

One	of	the	primary	goals	in	designing	HashNET	was	a	significant	reduction	of	computational	and	
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communication	resources	needed	to	operate	and	maintain	the	system.	With	this	goal	in	mind,	

we	design	a	variant	of	a	Redundancy	Reduced	Gossip	(RRG)	protocol	for	information	transfer	on	

appropriately	designed	network.	Such	RRG	protocols	achieve	considerably	lower	traffic	load	than	

conventional	 push-based	 gossip	 protocols	 and	 conventional	 push-pull	 gossip	 protocols,	while	

maintaining	the	same	probability	of	successful	delivery	[6].	

	

 

Figure	1:	Information	frame	from	peer	1	are	diffused	via	gossip	that	are	3-phase	message	exchanges	in	one	cycle:	(a)	

Phase	1:	Greeting,	(b)	Phase	2:	Response,	(c)	Phase	3:	Closure,	and	(d)	After	all	phases;	Fanout=2;	Peer(s)	shaded	

black	is	infected	at	the	beginning	of	the	phase;	Peer(s)	shaded	grey	is	infected	at	the	end	of	the	phase;	Peers	shaded	

white	remain	uninfected	at	the	end	of	the	phase;	A	solid	line	refers	to	a	message	containing	a	frame;	A	dotted	line	

refers	to	an	empty	message.		[6]	

	

Traffic	load	in	Figure	6	is	measured	in	terms	of	average	number	of	copies	of	an	information	frame	

received	by	each	peer.	But	each	message	contains	protocol	headers,	and	the	resulting	overheads	

for	the	two	compared	protocols	are	different.	When	n=100	and	the	average	number	of	active	

peers	is	 less	than	3,	with	c=2,	the	overhead	in	RRG	is	around	20%	of	total	traffic.	Most	of	the	

overhead	 is	contributed	by	the	APL,	where	membership	 information	 is	carried	and	requires	6	

bytes	 per	 peer.	 In	 the	 same	 settings,	 the	 overhead	 of	 the	 conventional	 push	 gossip	 and	 the	

conventional	push-pull	gossip	are	around	40%	of	total	traffic.	Most	of	the	overhead	is	contributed	

by	the	buffer-map,	which	is	at	least	12	bytes	per	gossip	message.		

	

It	is	important	to	note	that	our	protocol	generates	a	smaller	number	of	messages	than	the	fully	

connected	peer-to-peer	overlay	approach	in	N-to-N	communication.	The	number	of	messages	in	
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our	protocol	is	only	around	24%	that	of	the	fully	connected	overlay	approach.			

	

Figure	 2:	 Performance	 comparison	 of	 redundancy	 reduced	 gossip	 (RRG),	 the	 conventional	 push	 gossip	 and	 the	

conventional	push-pull	gossip.		[6]		

 
 

COMPUTATIONAL	AND	COMMUNICATIONAL	EFFICIENCY	
 
While	RRG	and	other	asynchronous	distributed	consensus	protocols	provide	communicational	

and	 computational	 efficiencies,	 additional	 implementation	 improvements	 are	 necessary	 to	

handle	 large	 fast	 growing	 systems.	 A	 direct	 implementation	 of	 such	 protocols	 could	 require	

exchanging	as	much	as	O(n^3)	messages	for	reaching	a	consensus	on	a	single	binary	outcome	

(e.g.,	see	[7]),	which	would	make	them	not	practical	and	unsustainable	for	systems	where	the	

number	of	nodes,	n,	is	large.	Thus,	it	is	imperative	to	implement	the	consensus	protocol	in	a	way	

that	minimizes	communicational	load	due	to	information	transfer	among	nodes.	

	

However,	we	leverage	the	fact	that	every	node	has	a	sufficient	information	on	the	entire	HashNET	

structure,		including	information	about	events	and	their	propagation	through	the	network.		We	

use	this	information	to	compute	content	of	the	vast	majority	of	messages	required	by	our	RRG	
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protocol,	 thereby	 eliminating	 the	 need	 for	 sending	 them	 and,	 consequently,	 significantly	

reducing	 communication	 requirements.	 (A	 somewhat	 similar	 approach	 towards	 reducing	

communication	requirements	in	an	implementation	of	a	different	consensus	protocol	has	been	

proposed	in	[8].	Unlike	our	system,	a	critical	requirement	in	[8]	is	that	the	number	of	nodes	is	

constant	and	must	remain	fixed	constant	throughout.)	

	

An	important	prerequisite	for	an	efficient	computation	of	consensus	is	that	the	total	number	of	

nodes	(“voters”)	needs	to	be	known.	This	provides	an	inherent	difficulty	for	an	implementation	

involving	public	ledger,	as	the	number	of	nodes	can	vary	greatly.	We	overcome	this	difficulty	by	

assigning	to	every	node	the	vote	weight	that	is	equal	to	their	stake	at	a	given	point	of	time.	Since,	

at	any	given	point	of	time,	the	current	supply	of	coins	in	the	network	is	known	and	fixed,	this	

approach	ensures	proper	consensus	computations.	Thus,	by	assigning	node	weight	to	be	its	stake	

in	network,	we	achieve	the	ability	to	calculate	votes	instead	of	waiting	for	and/or	sending	actual	

votes	over	the	network.	As	the	protocol	provides	a	Proof-of-Stake	blockchain	discipline,	it	offers	

qualitative	efficiency	 advantages	over	blockchains	based	on	proof	of	physical	 resources	 (e.g.,	

proof	of	work).	
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Figure	3:	Illustration	of	HashNET	voting	weight	and	stake	changes	through	the	voting	rounds	as	a	result	of	transaction	

events.	Do	note	that	in	each	round	some	transactions	happen	that	transfer	Tolars	from	one	participant	to	another,	

however	total	vote	weight	through	the	network	stays	the	same	in	each	round,	enabling	us	to	have	virtual	voting	

without	knowing	the	number	of	nodes	in	advance.	

	

Furthermore,	with	such	weight	assignment	to	nodes,	 incentives	are	perfectly	aligned	with	the	

stakes,	suggesting	reduced	strategy	space	for	obstructive	and	malicious	behavior.	Indeed,	it	can	

be	shown	that	the	reward	mechanism	for	incentivizing	Proof-of-Stake	can	be	constructed	in	such	

a	way	that	truthful	behavior	is	an	approximate	Nash	equilibrium,	thus	neutralizing	selfish-mining	

attacks		(see,	e.g.,	[9,	10,	11]).	

 
 
 

REPUTATION	BASED	SYSTEM	
 
In	addition	to	the	Proof-of-Stake	based	discipline,	a	reputation	based	system	is	introduced	as	an	

additional	control	and	verification	mechanism.	This	allows	us	to	measure	‘severity’	of	network	
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protocol	 violations:	 some	 violations	 could	 simply	 be	 a	 consequence	 of	 sporadic	 unfortunate	

network	conditions	(small	negative	impact	on	reputation),	while	others	could	be	attributed	to	a	

specific	malicious	 intent	 (large	negative	 impact	on	 reputation).	 Similarly,	 for	nodes	which	are	

consistently	“fault-free”,	i.e.,	consistently	communicate	correct	information	and	locally	compute	

consensus	 correctly,	 a	 positive	 reputation	 is	 slowly	 built-up	 over	 time.	 All	 nodes	 whose	

reputation	falls	behind	a	certain	negative	reputation	threshold	are	banned	from	the	network	for	

the	amount	of	time	decided	by	an	exponential	backoff	algorithm.	(Such	reputation	based	systems	

have	already	been	proven	useful	for	self-regulating	in	many	P2P	applications	[12].)	

	

Information	about	node	reputation	is	realized	as	part	of	events	distribution	algorithms.		

	

The	reputation	score	is	computed	iteratively	and	cumulatively	and	involves	both	pattern	analysis	

for	a	behavior	over	time	of	a	single	node,	as	well	as	randomized	verification	checks.	

	

ACHIEVING	CONSENSUS	
 
Potentially	 faulty	 or	 malicious	 nodes	 provide	 an	 additional	 challenge	 of	 implementing	 a	

consensus	 protocol	 in	 an	 asynchronous	 environment.	 In	 fact,	 it	 is	 well-known	 that	 it	 is	

theoretically	 impossible	 for	 any	 deterministic	 protocol	 to	 reach	 an	 agreement	 in	 such	

environments	[16].	Thus,	our	implementation	resorts	to	a	class	of	so-called	iterative	randomized	

approximate	 consensus	 algorithms.	 The	 goal	 is	 to	 allow	 fault-free	 nodes	 to	 agree	 on	 values,	

overcoming	the	obstacle	posed	by	(possibly	incorrect	or	unreliable)	information	disseminated	by	

faulty	nodes.			

	

Theoretically,	the	most	challenging	case	are	leader-based	consensus	algorithms,	which	rely	on	a	

small	number	of	nodes	 that	cannot	be	 faulty	 (e.g.,	 such	as	 [8]).	 	 Such	protocols	are	prone	 to	

failure	and	usually	exhibit	several	unresolved	issues	in	the	case	of	a	malicious	node	becoming	a	

leader	[13].	In	contrast,	fully	distributed	protocols	(in	which	every	node	in	the	network	could	be	

decisive	and	in	which	no	node	is	always	decisive)	allow	for	design	of	algorithms	that	overcome	
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faulty	nodes	as	long	as	fault-free	nodes	form	a	supermajority	at	any	point	of	time.	More	precisely,	

the	 approximate	 consensus	 algorithm	 can	 be	 constructed	 even	 on	 fully	 connected	 graphs	

provided	that	the	total	number	of	nodes	n	>	3f,	where	f	is	the	number	of	faulty	nodes	[17].	Our	

implementation	leverages	this	result:	if	a	consensus	is	not	reached	after	a	number	of	rounds	of	

our	RRG	protocol,	we	initiate	a	sequence	of	“random	rounds”.	In	a	random	round,	any	non-faulty	

nodes	will	chose	their	votes	at	random,	and	will	have	a	non-zero	probability	of	all	choosing	the	

same	vote.	The	randomization	is	such	that	guarantees	the	correct	agreement	among	non-faulty	

nodes	 with	 high	 probability.	 Thus,	 implementing	 a	 small	 number	 of	 random	 rounds	 results	

ensures	 convergence	 to	 consensus	 (i.e.,	 the	 probability	 of	 failure	 is	 converging	 to	 zero	 at	 an	

exponential	 rate).	 	 	 Finally,	 we	 note	 that	 randomization	 does	 not	 need	 to	 pose	 a	 significant	

computational	burden	and	can	be	manipulation-free,	as	bits	provided	by	event	hash	(that	need	

to	be	computed	anyway)	can	be	used	as	a	source	of	pseudorandom	data	[18].	

 

HASHNET	UTXO	STORAGE	REQUIREMENTS	
 
In	addition	to	aforementioned	speed	performance	guarantees	made	possible	by	HashNET	design,	

we	are	also	able	to	guarantee	improvements	in	the	global	data	storage	size.	Specifically,	HashNET	

data	storage	is	designed	by	generalizing	the	approach	laid	out	in	MimbleWimble	whitepaper	[14].	

The	main	 benefit	 of	 this	 approach	 is	 that	 it	manages	 to	 simultaneously	 handle	 security	 and	

versatility.	

	

We	 utilize	 concepts	 such	 as	 Confidential	 Transactions	 and	 "One-Way	 Aggregate	 Signatures"	

(OWAS),	which	are	shown	to	provide	private	exchanges	and	better	adaptability.	The	main	idea	

behind	OWAS	is	that	when	the	outputs	are	created	and	destroyed,	it	is	the	same	as	they	never	

existed.	Consequently,	to	approve	the	entire	chain,	a	client	only	needs	to	know	when	coins	were	

inputted	 into	 the	 framework	 and	 what	 are	 last	 unspent	 yields.	We	 then	 utilize	 Confidential	

Transactions	 to	 conceal	 the	 sums	 and	OWAS,	 thereby	 obscuring	 the	 exchange	 diagram.	 This	

approach	 utilizes	 less	 space	 than,	 e.g.,	 Bitcoin	 to	 enable	 clients	 to	 verify	 the	 blockchain.	 For	

instance,	the	Bitcoin	blockchain	is	currently	about	160GB	in	size,	while	HashNET	would	require	a	

small	fraction	of	that	amount	for	the	same	amount	of	transactions,	thus	allowing	even	today's	
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standard	smartphones	to	act	as	nodes.			

	

In	our	approach	(similar	to	MimbleWimble),	the	beneficiary	of	transaction	creates	the	blinding	

element	which	is	utilized	to	demonstrate	responsibility	for	coins.	This	is	done	through	the	"excess	

value",	which	is	the	contrast	between	the	information	sources	and	yields.	This	overabundance	

esteem	 is	 an	 arrangement	 of	 arbitrary	 numbers	 that	 guarantee	 that	 only	 the	 individual	who	

created	 the	 blinding	 factor	 (the	 collector/receiver)	 can	 spend	 the	 coins.	 Thus,	 the	 blinding	

variables	don't	indicate	zero	any	longer,	but	instead	another	number,	resembling	a	private	key.	

The	 important	 feature	 of	 our	 approach	 is	 that	 it	 is	 not	 interactive,	 which	 in	 turn	 creates	

efficiencies	by	eliminating	the	need	for	storing	any	redundant	information	on	history	of	individual	

transactions.	Rather	than	containing	complete	history	of	all	transactions,	the	blocks	(analogous	

to	MimbleWimble)	only	have	a	list	of	new	inputs,	a	list	of	new	outputs,	and	a	list	of	signatures	

which	 are	 created	 from	 the	 aforementioned	 excess	 value	 (Note	 that	 the	 latter	 list	 provides	

sufficient	record	of	all	historical	transactions).	

	

In	 summary,	 generalizing,	 adapting	 and	 implementing	MimbleWimble	 approach	 for	 use	 on	 a	

HashNET	provides	a	chain	format	that	has	excellent	scalability,	privacy	and	fungibility	properties.	

 

DEMOCRATIC	USER-GOVERNED	SYSTEM	
 
One	of	the	central	features	of	HashNET	design	is	a	democratic	governance	system	which	allows	

for	involvement	the	entire	community	and	is	open	to	everyone.	

	

Specifically,	any	node	in	HashNET	network	can	propose	tenders,	and	then	Magnus	Consilium	

decides	and	votes	on	each	such	proposal.	Magnus	Consilium	is	comprised	of	all	the	

masternodes	with	positive	reputation	in	HashNET.	Voting	is	decided	by	simple	majority.	

	

Next	we	provide	examples	of	eligible	tenders:	

• social	impact	

• distributed	governance	



10 
 

• contribution	

• outreach	

• extensiveness	

 

FUTURE	OF	HASHNET	
	

Decentralized	applications	
 
Once	desired	throughput	is	achieved,	Ethereum	Virtual	Machine	(EVM)	will	be	deployed	on	top	

of	network.	The	EVM	is	a	virtual	machine	specifically	designed	to	run	untrusted	code	on	a	network	

of	computers.	Every	transaction	applied	to	the	EVM	modifies	the	State	which	 is	persisted	 in	a	

Merkle	Patricia	tree.	This	data	structure	allows	to	simply	check	if	a	given	transaction	was	actually	

applied	to	the	VM	and	can	reduce	the	entire	State	to	a	single	hash	(merkle	root)	rather	analogous	

to	a	fingerprint.	

	

The	EVM	 is	meant	be	used	 in	 conjunction	with	a	 system	that	broadcasts	 transactions	accross	

network	 participants	 and	 ensures	 that	 everyone	 executes	 the	 same	 transactions	 in	 the	 same	

order.	Ethereum	uses	a	Blockchain	and	a	Proof	of	Work	consensus	algorithm.	Here,	we	will	use	

HashNET.	

	

The	combination	of	EVM	and	HashNET	makes	 for	a	 fast	and	secure	decentralized	applications	

platform.		

 

Quantum	resistance	
 
The	 elliptic	 curve	 signature	 scheme	 used	 by	 Bitcoin	 is	 well-known	 to	 be	 broken	 by	 Shor’s	

algorithm	 [17]	 for	 computing	 discrete	 logarithms.	 That's	 why	 in	 the	 next	 5	 years	 it	 will	 be	

imperative	to	switch	to	alternative	signature	schemes	that	are	believed	to	be	quantum	safe.	Exact	

scheme	that	will	be	implemented	in	HashNET	is	still	being	decided	on.			
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