
TWIST: Revolutionising

Blockchain Accessibility

TWIST Developers

April 18, 2018

Note: TWIST is a work in progress and this project is

development driven in nature. This paper will be continually

updated and new versions will appear at

https://twist.network. For comments and suggestions,

contact us at contact@twist.network

1. Introduction

TWIST is a blockchain based decentralised platform and

ecosystem which aims to increase the accessibility of the

blockchain through innovative services and features targeted

at casual cryptocurrency users and programmers interested

in utilising blockchain technology. Features such as TWIST

ID strive to simplify the payment process and make it more

familiar and friendly to create and send transactions. TWIST

DATA aims to provide a simple and clear interface to allow

users and programmers to read and write encrypted data to

the blockchain. TWIST API will provide a modern,

language agnostic programming interface which can be

utilised by developers to integrate their applications with the

TWIST blockchain. Further features and services are

planned and will be developed as the project progresses.

The ultimate goal for TWIST is to achieve widespread

adoption and to create a thriving self-sustaining ecosystem

where TWIST coins are used to pay for both blockchain

based, and off-chain features, the fees of which are allocated

as rewards to node owners for providing services and for

stabilising and securing the network.

2. TWIST Coin

2.1. Specification

The TWIST coin is a Proof-of-Stake (PoS) crypto-currency

based on the STRAT coin by Stratis. The initial supply of

TWIST was 200,000,000 coins which were premined and

predominantly distributed via airdrop. TWIST has a fixed

target block-time of 30 seconds and a uniform block-reward

of 20 TWIST per mined block. Given 2 blocks are mined

every minute, with 1440 minutes in a day, and 365 days in a

year, approximately (2 * 1440 * 365) * 20 = 21,024,000 new

TWIST are mined every year, which represents an annual

inflation rate of about 10.5%.

2.2. Distribution

Of the 200,000,000 TWIST coins that were premined,

20,000,000 (10%) were reserved as a development fund,

10,000,000 (5%) were reserved as a bounty fund, and the

remaining 170,000,000 (85%) were airdropped to

BitcoinTalk forum members. To be eligible to sign up to the

airdrop, forum member accounts had to have an account that

had existed for more than 2 weeks, with a post count of at

least 15. 1938 accounts signed up to the airdrop and each

account received an even share of the coins (170,000,000 /

1938) = 87719 coins per participant.

3. Encoding Auxiliary Data into Transactions

Blockchain based Twist services will rely on data being

written to and retrieved from the TWIST core blockchain. A

protocol has been defined to facilitate this.

3.1. Protocol Specification

Every TWIST transaction contains a non-zero number of

output addresses. A TWIST output address is an identifier of

33-34 alphanumeric characters, beginning with the number 1

that represents a potential destination for a TWIST payment.

Normally these addresses are displayed in their Base58

format; however each address is in essence just a 20 byte

binary string. Since 20 bytes of arbitrary information can be

stored in a single address we can use output addresses as

simple and transparent ways of encoding data onto the

blockchain. Simply convert the data to be included into valid

Base58 addresses and use them as outputs in a transaction.

Then after the transaction has been broadcast to the network,

all clients have the ability to decode the addresses and

retrieve the raw data in UTF-8 encoding.

The encoding to Base58 process is well documented online,

so for brevity the steps are not outlined in this paper.

3.2. Advantages and Drawbacks

Encoding data into output addresses has the advantage of not

needed a lot of complex code to extract the payload - simply

iterate though each of the output addresses in a transaction

and pass them through a Base58 decode function. This also

means that existing tools such as block-explorers can be

easily adapted to process and display the auxiliary data.

However, the extra addresses may clutter transactions and

confuse casual users. Fortunately, block explorers and

wallets can be easily programmed to hide the excess

addresses to maintain a simplified user experience when

necessary.

4. TWIST ID

A TWIST ID is a public identifier which can be assigned to

any valid TWIST address. An ID is a 3 to 18 character string

consisting only of alphanumeric, dash, and underscore

characters (a-zA-Z0-9-_). An address can only have one ID

assigned to it at a time, and IDs must be unique (case

insensitive). The purposes of TWIST IDs are to simplify and

familiarise the payment process for users, allowing them to

send and receive transactions from recognisable recipient

identifiers rather than the standard Base58 cryptographic

addresses.

4.1. Encryption Keys

When a user registers a TWIST ID to an address, an Elliptic

curve Diffie-Hellman (ECDH) key pair is generated and the

private key is encrypted with the registering address‟s

private key. The registration information, public key, and

encrypted private key are all written to the blockchain in a

single transaction and are publicly visible. Utilising

asymmetric key cryptography facilitates utilities such as

encrypted communication between two TWIST ID users.

4.1.1. Key Generation

When a user wishes to register a TWIST ID, an ECDH

asymmetric key pair is securely computed using the

secp256k1 curve. Both key components are then formatted

as hex strings. For obvious reasons the private key

component must first be encrypted before it is written

publicly to the blockchain.

4.1.2. Key Encryption

Private keys for every TWIST ID need to be stored on the

blockchain so they can be retrieved automatically by the

owner of the ID. However, since the blockchain is a public

ledger accessible to anyone with the tools to read it, the

private key must first be encrypted in such a way that only

the owner of its associated ID can decrypt it.

Ownership of a TWIST ID is defined as having possession

of the private key of the address the ID was registered to.

Therefore, by encrypting the ID private key with the

registering address private key, only the owner of the ID is

able to decrypt it.

4.1.3. Encryption Procedure

A 32 byte encryption key is derived using a password-based

key derivation function with the address private key as the

password, address as the salt, and a SHA512 digest

algorithm with 10000 iterations. A 16 byte initialisation

vector is also derived using the same approach, except 5000

iterations of the digest algorithm is used. These derivations

are deterministic in nature – the same result will always be

derived for a given password and salt.

Industry standard 256-bit symmetric encryption (AES-256 in

Cipher Block Chaining mode) is then used, utilising the

above key and initialisation vector, to securely encrypt the

ID private key. Finally, the encrypted key is converted to a

Base64 string, ready to be written on to the blockchain.

Deriving an encryption key rather than using the address

private key directly to encrypt data has a rather arcane

advantage of allowing for ID data to be encrypted/decrypted,

with the knowledge that if the encryption key is

compromised, funds stored in the associated address are still

secure, since the derivation function is one-way.

4.2. Registration Procedure

A TWIST ID can be registered by broadcasting a transaction

to the TWIST blockchain with the following properties:

1. All inputs are Unsigned Transaction Outputs

(UXTO) spendable to the registering address – this

ensures that ID registration transactions have

provable ownership to the registering address, since

the registering address‟s private key is required to

sign the transaction.

2. A registration fee (50 TWIST at the time of writing)

is divided and sent to a series of 17 data-encoded

addresses. The fee acts as a deflationary measure for

the TWIST currency since the coins are in effect

being burned. The fee also acts to deter individuals

from registering a selfish amount of IDs and thus

restricting the IDs availability to other users.

3. Exactly 17 data-encoded addresses in a determined

order. The first address is fixed and acts as an

indicator to let the network know to examine this

transaction for a possible ID registration. The

second address, when decoded from Base58

contains the ID to be registered. The following 4

addresses contain the public ECDH key which was

generated by the user before registering. The

remaining 11 addresses contain the encrypted

private EDCH key.

4.3. Detecting ID Registrations

Valid TWIST ID registrations are discovered on the network

by the following algorithm:

1. procedure detect_id_registrations()

2. for block in blocks do

3. for tx in block.txs do

4. for vout in tx.vouts do

5. if vout.address is ID_REG_ADDRESS then

6. startIndex = tx.vouts.index_of(vout);

7. confirm_id_registration(tx.vins, tx.vouts, startIndex);

8. break;

9. end

10. end

11. end

12. end

13. end

14.

15. procedure confirm_id_registration(vins, vouts, startIndex)

16. paid = 0;

17. id, pubkey, privkey, registrants;

18. for i = startIndex; i < vouts.length; i++ do

19. paid += vouts[i].value;

20. if i is startIndex then

21. continue;

22. else if i is startIndex + 1 then

23. id = base_58_decode(vouts[i].address);

24. else if i <= startIndex + 5 then

25. pubkey += base_58_decode(vouts[i].address);

26. else

27. privkey += base_58_decode(vouts[i].address);

28. end

29. for vin in vins do

30. for a in vin.addresses do

31. registrants.add(a);

32. end

33. end

34. if isValid(id) & isValid(pubkey) & isValid(privkey) &

35. id ∉ idSet & pubkey ∉ pubkeySet & privkey ∉ privkeySet &

36. |registrants| is 1 &

37. registrants ⊄ registrantSet &

38. paid >= ID_REG_FEE then

39. idSet.add(id);

40. pubkeySet.add(pubkey);

41. privkeySet.add(privkey);

42. registrantSet.add(registrants);

43. end

44. end

Figure 1: TWIST ID registration discovery algorithm

Remarks on Figure 1:

1-13: Every transaction in every block on the TWIST core

blockchain is scanned to determine whether it includes an

output to the TWIST ID registration flag address. If such a

transaction is found, then it is inspected to ascertain whether

it contains a valid ID registration.

18-28: Each output in the transaction from the flag address

onwards is parsed in an attempt to retrieve the ID, public

key, and encrypted private key of the registration. The value

of each output is cumulatively totalled to confirm whether

the fee has been paid.

29-33: Each input address to the transaction is added to a set

of registrant addresses.

34: For a registration to be valid the parsed ID, public key,

and encrypted private key data must be in the correct format.

The isValid() functions check the length of the fields are in

the expected range and that the fields do not contain any

illegal characters.

35: idSet, pubkeySet, privkeySet are global sets populated

by running the algorithm in a chronological order starting

from the first block. After every successful registration, the

ID, pubkey, and privkey for that registration is added to its

respective set. For a registration to be valid, the ID, pubkey,

and privkey must not already be in use (not already a

member of their respective set).

36: The registrants set must be a singleton set since an ID

can only be registered to a single address and there must be

no ambiguity in the address being registered. Registrations

of an ID to an address require all inputs to the transaction to

originate from the registering address, which ensures that the

owner owns the private key to the address, since it is

necessary to sign the UXTO.

37: The registrants set must not be a subset of the global

registrantSet (the address must not already have an ID

registered to it).

38: The total value sent to the data-encoded (burn) addresses

must be greater than or equal to the ID registration fee. This

requires that a determined amount of coins are burned for a

registration to be successful.

39-42: Since the registration is successful, add its elements

to their respective sets.

4.4. TWIST ID Transactions

An owner of a TWIST ID may send a transaction to another

TWIST ID owner such that the recipient is able to see the ID

of the sender, even if none of the coins spent in the

transaction originated from the sender ID‟s registrant

address. These transactions may also contain encrypted

messages, decipherable only by the owners of the involved

IDs. These transactions are syntactically identical to regular

TWIST transactions and they are also publicly broadcast on

the core blockchain.

The auxiliary data to facilitate these transactions is encoded

using the same protocol as previously specified in the paper

(i.e. the data is encoded into Base58 output addresses).

4.4.1. Transaction Structure

A TWIST ID transaction has the following output structure:

1. A recipient address: This is the address the

recipient‟s ID is registered to. The value out for this

address is the amount of coins being sent from the

sender to the recipient.

2. [Optional] A change address: For returning excess

coins (sum of all input values – sum of all output

values in the transaction) back to the sender.

3. A flag address. This is a fixed predetermined

address which acts as an indicator to the TWIST

network to make it aware that this transaction may

be a TWIST ID transaction, and to inspect it further.

Different flag addresses are used depending on

whether the transaction contains a message. This

provides an easy way for the client to distinguish

whether the transaction contains a message without

needing to perform any decryption.

4. Sender ID address: This address contains a Base58

encoding of the sender‟s TWIST ID, and is

necessary for the recipient to know the ID of the

sender.

5. Validation/Message addresses: Each TWIST ID

transaction contains a validation string for security

purposes. If the transaction does not contain a

message, then the validation string is encrypted and

encoded into a series of addresses. If the transaction

contains a message, then the validation string is

prepended to the message before being encrypted

and encoded into the addresses.

4.4.2. Fees

As with TWIST ID registrations, a fee is required for

TWIST ID transactions to be considered valid. At the time

of writing, the fees are 1 TWIST for a standard TWIST ID

transaction (recipient can see sender ID), and 20 TWIST for

transactions including a message. These fees are completely

arbitrary but provide a deflationary mechanism to the coin.

A small fee is a necessity when data is being encoded into

output addresses, since a non-zero amount needs to be sent

to an encoded address for it to be contained in a transaction.

4.4.3. Encryption Procedure

Messages contained in TWIST ID transactions are encrypted

in such a way that they only decipherable to the owners of

the sender and recipient IDs in the transaction. This is

facilitated by utilising the ECDH key exchange protocol as

described earlier.

Messages are encrypted by first computing a shared secret

key from the sender‟s ID private key, and the recipient‟s ID

public key. The message is then encrypted with symmetric

AES-256 CBC encryption using the shared secret key as the

encryption key.

Decrypting the message follows the same procedure, except

the shared secret is computed using the recipient‟s ID private

key, and the sender‟s ID public key.

4.5. TWIST ID Transaction Spoofing

In each TWIST ID transaction, the sender ID is sent

essentially in plaintext (encoded in the sender ID address).

Theoretically, a transaction could be spoofed to appear to be

sent from any ID – simply replace the sender ID address

with an address containing any encoded ID.

4.5.1. A Solution

To prevent transaction spoofing, each TWIST ID transaction

is required to contain an encrypted validation string. The

string is simply an arbitrary non-Base64 character (i.e. $)

followed by a randomly generated, Base64 string of 18

characters, followed by the same non-Base64 character. If

the transaction contains a message, then the validation string

is prepended to the raw message content before encryption.

Else the validation string is simply encrypted using the same

procedure as for messages.

When a client receives a transaction, an attempt to decrypt

the validation string is made using the sender‟s ID public

key and the recipient‟s ID private key. If the decryption

fails, or the decrypted text does not contain a validation

string in the expected format, or the validation string has

been seen before in a previous transaction, then we consider

the transaction invalid and it is ignored.

This validation mechanism ensures that the sender of the

transaction is the owner of the sender ID, since knowledge

of the sender‟s ID private key is required to compute the

same shared secret that will be computed on the recipient‟s

side.

4.6. Proof of Burn

At present, coins sent to data-encoded addresses are

considered to be satisfactorily burned since an infeasible

amount of computing power would be required to generate

the corresponding keys for the addresses, which are

generated from input data.

The flag addresses are the only predetermined addresses

present in TWIST ID transactions, so there may be concerns

that the development team own the corresponding keys to

these addresses and so can spend the coins being sent to

them. To assure the community this is not the case, the

addresses, when decoded from Base58, contain descriptors

of their use (e.g. “TWIST ID REG”). As we could not

possibly have access to the computing power necessary to

cryptographically generate the keys for these addresses, the

community can be satisfied that coins sent there are being

burnt.

Ideally, in future, coins will be provably burned possibly via

utilising the OP_RETURN script opcode.

5. TWIST DATA

The internet is undergoing a fundamental shift away from

centralised services and towards decentralised open ones.

The popularity and hype surrounding blockchain technology

is well deserved, with the success of Bitcoin, Ethereum, and

other blockchain networks proving the utility and value of

decentralised, distributed ledgers. People are becoming

aware of the benefits to using decentralised systems with no

single point of failure.

TWIST DATA defines a simple yet robust protocol for

writing small pieces of information onto the TWIST

blockchain. The data is safe and secure, being maintained by

a network of hundreds of computers around the world, with

no single points of failure and no possibility of data losses.

TWIST DATA isn‟t intended as a means to store large files,

but rather as a tool to give users an easy way of securing and

storing small pieces of information (e.g. passwords, contact

information, etc.) on a completely decentralised distributed

ledger with no central point of failure.

5.1. Protocol

As with TWIST ID, the auxiliary data is encoded into

TWIST addresses and written to the blockchain in the form

of outputs in a transaction. Two types of data transactions

are defined: private and shareable. In private transactions,

the data payload is intended to only be decrypted by the

owner. Shareable transactions provide the creator with a

unique key that can be shared with others to allow them to

decrypt and access the data.

5.2. Private Data Transactions

5.2.1. Encryption Protocol

The user is given the option to decide which of their

addresses they would like to encrypt the data with. A 32-

byte encryption key is then derived using a password-based

key derivation function with the encryption address private

key as the password, encryption address as the salt, and a

SHA512 digest algorithm with 15000 iterations (iteration

numbers are arbitrary but are chosen to vary between

different TWIST services to enhance security). A 16-byte

initialisation vector is also derived using the same approach.

Industry standard 256-bit symmetric encryption (AES-256 in

Cipher Block Chaining mode) is then used, utilising the

above key and initialisation vector, to securely encrypt the

data.

5.2.2. Transaction Structure for Private Data

A TWIST DATA private transaction has the following

output structure:

1. [Optional] A change address. For returning excess

coins (sum of all input values – sum of all output

values in the transaction) back to the sender.

2. A flag address. This is a fixed predetermined

address which acts as an indicator to the TWIST

network to make it aware that this transaction may

be a TWIST DATA private transaction, and to

inspect it further. Different flag addresses are used

depending on whether the transaction type is private

or shareable, allowing clients to parse the

transaction correctly.

3. Encryption address private key hash. This is the first

20 characters of a hash of the private key used to

encrypt the data. This allows clients to check

whether the encryption address is present in the

user‟s wallet (and so they own and can decrypt the

data).

4. Validation/Data addresses. These addresses contain

the encrypted data and a validation string to protect

against transaction spoofing.

5.3. Shared Data Transactions

5.3.1. Encryption Key Specification

For each shared data transaction, a secret key needs to be

created which is shareable to others to allow them access to

the data. As such, the key should have the following

properties:

 Unique – The key must only decrypt the data in the

transaction it was created for.

 Secure – It should not be feasible to guess or brute-

force attack the key.

 Independent – Knowledge of the key should not

expose any sensitive information about the owner.

e.g. the key should not be a sub-section or direct

derivative of the owner‟s private key

 Retrievable – The data owner should not need to

remember the encryption key for their data. The key

for a shared data transaction should be easily re-

creatable or retrievable for the owner of the data.

5.3.2. Encryption Key Generation

To create a sharable data encryption key, a Base64 string

with a length of 18 characters is randomly generated. This

fulfils the criteria of being unique, secure, and independent.

It is also not impractically lengthy, which is something

worth considering if the intention is for it to be shared. To

make the key retrievable, it is encrypted with the user‟s

private key and written to the blockchain in a transaction,

allowing for automated retrieval in future.

Figure 2: The chaining of encryption keys used in TWIST DATA

shared data transactions

5.3.3. Encryption Protocol

The user designates which of their addresses they wish to set

as the owner of the data (the encryption address). The

private key of this address is used to deterministically derive

a key which is then used to encrypt the shared key.

If the encryption address is not the owner of any existing

shared data transactions then the encrypted shared key is

bundled into a transaction containing a special flag address

and an address containing the encryption address private key

hash. The transaction, shown in Block x in Figure 2, is

pushed to the network and after receiving at least one

confirmation, the shared key is used to encrypt the data and

another shared key is generated and encrypted. The new

encrypted shared key and the data encrypted with the

previous shared key are then bundled into a transaction

which is pushed to the network. This is the TWIST DATA

transaction, as shown in Block y in Figure 2.

If the encryption address is the owner of any existing shared

data transactions, then the shared key is retrieved from the

most recent valid transaction and used to the encrypt the new

data. A new shared key is then generated and encrypted and

bundled along with the encrypted data into a TWIST DATA

transaction, shown in Block z in Figure 2, which is then

pushed to the network.

By using this method, data owners are able to retrieve the

keys for all of their shared data by following the chain of all

their shared data transactions, starting from the initial

transaction containing just the key. This technique does

however enforce a one per block limit on shared data

transactions for a given encryption address.

5.3.4. Transaction Structure for Shareable Data

A TWIST DATA shareable transaction has the following

output structure:

1. [Optional] A change address.

2. A flag address, specific to TWIST DATA shareable

transactions.

3. Encryption address private key hash.

4. Key/Validation addresses. These addresses contain

an encrypted unique key for which a following

shareable data transaction, with the same encryption

address, will use to encrypt its data. The key also

doubles as a validation string to determine the

transaction has not been spoofed or duplicated.

5. Data addresses. These addresses contain the

encrypted data.

5.4. TWIST DATA Transaction Spoofing

Similar to as with TWIST ID transactions, by manipulating

the encryption private key hash address in a TWIST data

transaction, a transaction can be made to appear to be owned

by another address. While this does not present any security

concerns, it could be used to spam a user and make their

client display transactions they did not create. To ensure a

transaction is legitimate, validation strings are included in

each transaction. In shared data transactions, the validation

string is simply the shared key. In private data transactions,

the validation string is prepended to the data before

encryption occurs.

5.5. Fees

All TWIST DATA transactions require a fee to be

considered valid by the network. Fees are subject to change

but at the time of writing, we propose a fee of 20 TWIST

should be required per 500 characters of data.

6. TWIST API

As demand for blockchain based services increases, it is

anticipated that an increasing number of applications both on

a hobbyist and industrial scale will strive to utilise

blockchain technology. TWIST API will provide developers

with a simple yet powerful interface to access TWIST

services and write and read information to and from the

TWIST blockchain. The goal is to facilitate a simple way for

developers to utilise the TWIST blockchain in their

applications, thus incentivising usage and adoption of

TWIST currency and platform.

6.1. API Functions

The API will abstract the underlying implementation for all

TWIST services (e.g. ID, DATA, etc.), and only expose the

actions the developer needs. Some (but by no means all) of

the methods intended to be offered by the first edition of the

API:

 Authenticate a TWIST ID - i.e. confirm that the user

owns the private key of the address for which the ID

is registered

 Register a TWIST ID

 Send a TWIST ID Transaction

 Write data to the TWIST blockchain

 Read data from the TWIST blockchain

The scope of the functions provided by the API will

continue to grow as the TWIST platform evolves and more

features and services are developed.

6.2. Use Cases

By exposing the ability to authenticate and register TWIST

IDs, developers can integrate TWIST ID with their

applications (for example, „Login via TWIST ID‟

functionality). However, we expect TWIST DATA

functionality (i.e. writing/reading data to/from the

blockchain) to be the most utilised.

6.2.1. Example Use Case 1

A video game developer may choose to utilise the TWIST

blockchain to keep a record of each player‟s score in the

game. Each player first authenticates with their TWIST ID,

and then upon completing the game they may wish to submit

their score to the TWIST blockchain. The data is written to

the blockchain and a leader board is constructed by reading

all scores from the blockchain.

Using a blockchain to store information, such as player

scores, may be preferable over a database since the data is

secured with no need for backups, there is zero network

downtime, the data has complete immutability, and the

storage is fully decentralised with no central point of failure.

6.2.2. Example Use Case 2

A university assignment submission system may wish to

utilise the TWIST blockchain to verify that a student has

submitted their assignment on time. When a student uploads

their assignment files, each file is passed through a

cryptographic hashing function and the resulting hash is

written to the TWIST blockchain along with the student‟s

ID. This provides a decentralised and permanent record that

the file existed at the time of the transaction network

confirmation, taking advantage of the distributed

irreversibility of blockchain technology. Students can feel

safe in the knowledge that a decentralised, distributed ledger

can provide irrefutable proof that their assignment existed

and was submitted to the school‟s servers at a given time.

6.3. Specification

The API is designed to be language agnostic, allowing

programmers working in any language to make requests and

receive responses through standard protocols and in common

formats (e.g. HTTP/JSON). Initially, the API is intended to

be built as an interface to run on top of the TWIST Toolbox

desktop application. Developers running the Toolbox could

consequently enable and configure the API to receive

requests from external IP‟s, allowing them to run an API

server which can be used to serve their applications.

7. TWIST Nodes

Services such as TWIST ID, rely on writing and reading data

to and from the blockchain. However, for certain purposes

blockchain based data access becomes impractical as block-

size limits and block-times hinder streamlined functionality.

A peer-to-peer messaging application for example would not

be well suited to operating solely on a blockchain, as there

would be a considerable delay between sending a message

and the recipient receiving it, as well as limits to the

maximum size of the message that can be sent in a single

transaction. TWIST Nodes are introduced as a facilitator to

provide support for off-chain functionality such as peer-to-

peer messaging and data storage, allowing the TWIST

platform be as comprehensive and feature rich as possible.

7.1. Requirements

Anyone will be able to run a TWIST Node provided they

possess a minimum amount of TWIST (exact amount yet to

be confirmed) to be used as the deposit for the node. Users

wishing to run a node will need to consolidate the deposit

amount into a single address and then make a registration

request on the blockchain. Their node will be registered and

will remain active so long as the balance of the address does

not drop below the deposit amount. Nodes will be free to

register and registrant‟s coins are never locked and are

always available to them should they wish to break their

node. Requiring a minimum deposit amount ensures that

each node owner has a significant stake in the TWIST

ecosystem, and an incentive to keep the network stable and

secure.

7.2. Functionality

Nodes will facilitate a network parallel to the TWIST core

blockchain which will enable services such as TWIST

CHAT to operate by acting as intermediary servers between

the communicating parties. TWIST ID users will be able to

send instant encrypted messages to each other relying on

AES symmetric encryption and Elliptic Curve

Cryptography, without the need for these messages to be

stored on the blockchain. The encrypted messages will first

be sent to and stored on nodes, and then delivered to the

recipient when they are online and able to receive them.

Blockchain based validation (e.g. upon sending a message

the sender writes the hash of a message payload to the

blockchain, which the recipient then uses to validate the

integrity of the message they receive) could also potentially

be utilised to assure the communicating parties that there

were no errors or tampering involved in the transmission of

their messages.

In conjunction with end-to-end encrypted messaging, nodes

will also provide extensions to the TWIST DATA service.

We envision a network where large data payloads and files

can be encrypted and stored off-chain on nodes,

consequently reducing the load on the core blockchain,

while still maintaining a distributed and decentralised data

storage network.

Nodes may also operate as API servers, exposing an

interface to the core blockchain for application developers to

connect to and utilise. As a result, developing applications

upon the TWIST blockchain may seem more appealing and

accessible as developers will not need to spend time or

money setting up their own API servers to serve their

applications.

7.3. Incentives

As a reward for running a TWIST Node, owners will earn

fees in TWIST depending on usage statistics (i.e. messages

served, disk space utilised, etc.) along with activity statistics

such as node uptime and average connection speed. Nodes

which are utilised more heavily or have longer, more

consistent uptimes will earn a greater distribution of fees,

incentivising a fast, stable, and secure network. It is

currently envisioned that fees will be collected from all

TWIST services and distributed on a weekly basis amongst

all node owners. A large proportion of the coins presently

being burned in services such as TWIST ID, will instead be

collected and used to pay node operators. In future, a

reduction in the staking reward may possibly be introduced

or the reward potentially eliminated altogether. This would

limit inflation, making the coin scarcer and helping the

TWIST ecosystem to transition into a sustainable fee based

model, where node owners have a strong incentive to secure

the network and provide services to TWIST users.

8. Future Developments

As the TWIST project evolves, documentation for more

features and services will be added to this document, and

additional detail will be provided for existing features as

development progresses.

