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THE HIVE 

ABSTRACT 

 

In this paper we analyze the mathematical foundations of a cryptocurrency 

PaymonCoin (PMNC). The main feature of this novel cryptocurrency is the hive, a directed 

acyclic graph (DAG) for storing transactions. The hive naturally succeeds the blockchain as 

its next evolutionary step, and offers features that are required to establish a machine-to-

machine micropayment system. An essential contribution of this paper is a family of Markov 

Chain Monte Carlo (MCMC) algorithms. These algorithms select attachment sites on the 

hive for a transaction that has just arrived. 

Contact: s.a.gleim@paymon.org 
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INTRODUCTION AND DESCRIPTION OF THE SYSTEM 

 

Internet selling usually using financial institutions as trustee for electronic payments 

processing. This system works well enough for most operations, but suffers from the 

weakness inherent in models based on trust. Bitcoin was supposed to be a system based on 

cryptographic evidence instead of trust, but in turn, has a number of other disadvantages: 

the high cost of transactions, a large delay in confirmation, and dependence on miners. With 

a decrease of miners, the number of confirmed transactions per unit of time will decrease. 

There is a need in electronic payment system that based on cryptographic evidence, but not 

dependent of miners. 

In this paper we discuss an innovative approach that does not incorporate blockchain 

technology. This approach is currently being implemented as a cryptocurrency called 

PaymonCoin. The purpose of this paper is to focus on general features of the hive, and to 

discuss problems that arise when one attempts to get rid of the blockchain and maintain a 

distributed ledger. The concrete implementation of the hive protocol is not discussed.  

In general, a hive-based cryptocurrency works in the following way. Instead of the 

global blockchain, there is a DAG that we call the hive. The transactions issued by nodes 

constitute the site set of the hive graph, which is the ledger for storing transactions.  

The edge set of the hive is obtained in the following way: when a new transaction 

arrives, it must approve or try to approve (we will discuss below) two previous transactions. 

these approvals are represented by directed edges, as shown in Figure 1. If there is not a 

directed edge between transaction A and transaction B, but there is a directed path of length 

at least two from A to B, we say that A indirectly approves B. There is also the “genesis” 

transaction, which is approved either directly or indirectly by all other transactions. The 

genesis is described in the following way. In the beginning of the hive, there was an address 

with a balance that contained all of the tokens. The genesis transaction sent these tokens to 

several other “founder” addresses. Let us stress that all of the tokens were created in the 

genesis transaction.  
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No tokens will be created in the future, and there will be no mining in the sense that 

miners receive monetary rewards “out of thin air”.  

A quick note on terminology: sites are transactions represented on the hive graph. The 

network is composed of nodes; that is, nodes are entities that issue and validate transactions.  

The main idea of the hive is the following: to issue a transaction, users must work to 

approve other transactions. Therefore, users who issue a transaction are contributing to the 

network’s security. It is assumed that the nodes check if the approved transactions are not 

conflicting. If a node finds that a transaction is in conflict with the hive history, the node 

will not approve the conflicting transaction in either a direct or indirect manner. 

As a transaction receives additional approvals, it is accepted by the system with a 

higher level of confidence. In other words, it will be difficult to make the system accept a 

double-spending transaction.  

It is important to observe that we do not impose any rules for choosing which 

transactions a node will approve. In order to issue a transaction, a node does the following:  

 The node chooses two other transactions to approve according to an algorithm. In 

general, these two transactions may coincide.  

 The node checks if the two transactions are not conflicting, and does not approve 

conflicting transactions. 

 For a node to issue a valid transaction, the node must solve a cryptographic puzzle 

similar to those in the Bitcoin blockchain. This is achieved by finding a nonce such that the 

hash of that nonce concatenated with some data from the approved transaction has a 

particular form. In the case of the Bitcoin protocol, the hash must have at least a predefined 

number of leading zeros. 

It is important to observe that the PMNC network is asynchronous. In general, nodes 

do not necessarily see the same set of transactions. It should also be noted that the hive may 

contain conflicting transactions. The nodes do not have to achieve consensus on which valid 

transactions have the right to be in the ledger, meaning all of them can be in the hive. 

However, in the case where there are conflicting transactions, the nodes need to decide 

which transactions will become orphaned.  
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The main rule that the nodes use for deciding between two conflicting transactions is 

the following: a node runs the tip selection algorithm many times, and sees which of the two 

transactions is more likely to be indirectly approved by the selected tip. 

Let us also comment on the following question: what motivates the nodes to propagate 

transactions? Every node calculates some statistics, one of which is how many new 

transactions are received from a neighbor. If one particular node is “too lazy”, it will be 

dropped by its neighbors. Therefore, even if a node does not issue transactions, and hence 

has no direct incentive to share new transactions that approve its own transaction, it still has 

incentive to participate. 

 

Figure 1 - DAG 
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WEIGHTS AND MORE  

 

In this section we define the weight of a transaction, and related concepts. The weight 

of a transaction is proportional to the amount of work that the issuing node invested into it. 

In the current implementation of PMNC, the weight may only assume values 3n, where n is 

a positive integer that belongs to some nonempty interval of acceptable values. In fact, it is 

irrelevant to know how the weight was obtained in practice. In general, the idea is that a 

transaction with a larger weight is more “important” than a transaction with a smaller 

weight. 

One of the notions we need is the cumulative weight of a transaction: it is defined as 

the own weight of a particular transaction plus the sum of own weights of all transactions 

that directly or indirectly approve this transaction. 

Let us define “tips” as unapproved transactions in the hive graph.  

We need to introduce two additional variables for the discussion of approval 

algorithms. First, for a transaction site on the hive, we introduce its height - the length of the 

longest oriented path to the genesis and depth - the length of the longest reverse-oriented 

path to some tip. 

Also, let us introduce the notion of the score. By definition, the score of a transaction 

is the sum of own weights of all transactions approved by this transaction plus the own 

weight of the transaction itself. 

In order to understand the arguments presented in this paper, one may safely assume 

that all transactions have an own weight equal to 1. From now on, we stick to this 

assumption. 
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STABILITY OF THE SYSTEM, AND CUTSETS 

 

Let 𝐿(𝑡) be the total number of tips in the system at time t. One expects that the 

stochastic process 𝐿(𝑡) remains stable. More precisely, one expects the process to be 

positive recurrent. In particular, positive recurrence implies that the limit of 𝑃[𝐿(𝑡) = 𝑘] as 

𝑡 ➝ ∞ should exist and be positive for all k ≥ 1. Intuitively, we expect that L(t) should 

fluctuate around a constant value, and not escape to infinity. If 𝐿(𝑡) were to escape to 

infinity, many unapproved transactions would be left behind.  

To analyze the stability properties of 𝐿(𝑡), we need to make some assumptions. One 

assumption is that transactions are issued by a large number of roughly independent entities, 

so the process of incoming transactions can be modeled by a Poisson point process. Let λ 

be the rate of that Poisson process. For simplicity, let us assume that this rate remains 

constant in time. Assume that all devices have approximately the same computing power, 

and let h be the average time a device needs to perform calculations that are required to issue 

a transaction. Then, let us assume that all nodes behave in the following way: to issue a 

transaction, a node chooses two tips at random and approves them. It should be observed 

that, in general, it is not a good idea for the “honest nodes” to adopt this strategy because it 

has a number of practical disadvantages. In particular, it does not offer enough protection 

against “lazy” or malicious nodes. On the other hand, we still consider this model since it is 

simple to analyze, and may provide insight into the system’s behavior for more complicated 

tip selection strategies. 

Next, we make a further simplifying assumption that any node, at the moment when 

it issues a transaction, observes not the actual state of the hive, but the one exactly h time 

units ago. This means, in particular, that a transaction attached to the hive at time t only 

becomes visible to the network at time t+h. We also assume that the number of tips remains 

roughly stationary in time, and is concentrated around a number 𝐿0 > 0. In the following, 

we will calculate 𝐿0 as a function of λ and h. Observe that, at a given time t we have roughly 

λh “hidden tips” (which were attached in the time interval [𝑡 − ℎ; 𝑡) and so are not yet visible 

to the network); also, assume that typically there are r “revealed tips” (which were attached 

before time 𝑡 − ℎ), so 𝐿0 = 𝑟 + 𝜆ℎ.  
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By stationarity, we may then assume that at time t there are also around λh sites that 

were tips at time t − h, but are not tips anymore. Now, think about a new transaction that 

comes at this moment; then, a transaction it chooses to approve is a tip with probability 
𝑟

𝑟+𝜆ℎ
 

(since there are around r tips known to the node that issued the transaction, and there are 

also around λh transactions which are not tips anymore, although that node thinks they are), 

so the mean number of chosen tips is 
2𝑟

𝑟+𝜆ℎ
. The key observation is now that, in the stationary 

regime, this mean number of chosen tips should be equal to 1, since, in average, a new 

coming transaction should not change the number of tips. Solving the equation 
2𝑟

𝑟+𝜆ℎ
= 1 

with respect to r, we obtain r = λh, and so 

𝐿0 = 2𝜆ℎ (1) 

We also note that, if the rule is that a new transaction references k transactions instead 

of 2, then a similar calculation gives  

𝐿0(𝑘) =
𝑘𝜆ℎ

𝑘−1
 (2) 

This is, of course, consistent with the fact that 𝐿0(𝑘) should tend to λh as 𝑘➝ ∞ 

(basically, the only tips would be those still unknown to the network). Also (we return to 

the case of two transactions to approve) the expected time for a transaction to be approved 

for the first time is approximately ℎ +
𝐿0

2𝜆
= 2ℎ. This is because, by our assumption, during 

the first h units of time a transaction cannot be approved, and after that the Poisson flow of 

approvals to it has rate approximately 
2𝜆

𝐿0
. 

Observe that at any fixed time t the set of transactions that were tips at some moment 

𝑠 ∈ [𝑡; 𝑡 + ℎ(𝐿0, 𝑁)] typically constitutes a cutset. Any path from a transaction issued at 

time 𝑡′ > 𝑡 to the genesis must pass through this set.  

It is important that the size of a new cutset in the hive occasionally becomes small. 

One may then use the small cutsets as checkpoints for possible DAG pruning and other 

tasks. It is important to observe that the above “purely random” approval strategy is not very 

good in practice because it does not encourage approving tips. A “lazy” user could always 

approve a fixed pair of very old transactions, therefore not contributing to the approval of 

more recent transactions, without being punished for such behavior.  
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Also, a malicious entity can artificially inflate the number of tips by issuing many 

transactions that approve a fixed pair of transactions. This would make it possible for future 

transactions to select these tips with very high probability, effectively abandoning the tips 

belonging to “honest” nodes. To avoid issues of this sort, one has to adopt a strategy that is 

biased towards the “better” tips. 

Before starting the discussion about the expected time for a transaction to receive its 

first approval, note that we can distinguish two regimes. 

 Low load: the typical number of tips is small, and frequently becomes 1. This may 

happen when the flow of transactions is so small that it is not probable that several different 

transactions approve the same tip. Also, if the network latency is very low and devices 

compute fast, it is unlikely that many tips would appear. This even holds true in the case 

when the flow of transactions is reasonably large. Moreover, we have to assume that there 

are no attackers that try to artificially inflate the number of tips.  

 High load: the typical number of tips is large. This may happen when the flow of 

transactions is large, and computational delays together with network latency make it likely 

that several different transactions approve the same tip. 

This division is rather informal, and there is no clear borderline between the two 

regimes. Nevertheless, we find that it may be instructive to consider these two different 

extremes. 

The situation in the low load regime is relatively simple. The first approval happens 

on an average timescale of order λ −1 since one of the first few incoming transactions will 

approve a given tip.  

Let us now consider the high load regime, the case where L0 is large. As mentioned 

above, one may assume that the Poisson flows of approvals to different tips are independent 

and have an approximate rate of 
2𝜆

𝐿0
. Therefore, the expected time for a transaction to 

receive its first approval is around 𝐿0/(2𝜆)  ≈  1.45ℎ (1).  

However, it is worth noting that for more elaborate approval strategies, it may not be 

a good idea to passively wait a long time until a transaction is approved by the others. This 

is due to the fact that “better” tips will keep appearing and will be preferred for approval.  
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Rather, in the case when a transaction is waiting for approval over a time interval 

much larger than 𝐿0/(2𝜆), a good strategy would be to promote this latent transaction with 

an additional empty transaction. 
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POOLS 

 

To speed up the process of approving transactions, the system has group of nodes that 

are engaged in joint validation. It works like this: when a node is connected to the system, 

the network tells it which group it belongs to. After that, the time synchronization of all pool 

members takes place. At certain intervals, the network selects the most important transaction 

and report it to the pool, after that, each member of the pool begins confirmation. Let us 

explain, let n be the number of pool members, d the average number of iterations required 

for finding the nonce, i is the index of the pool member. Then, r = [(d / n) i; (d / n) i + d) the 

range of values that the i-th member of the pool needs to go over. 
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PROOF – OF – ME 

 

This is a principle based on the Proof-Of-Work and the rating system. This protection 

principle assumes, that the user who wants to interact with the system, must first confirm 

himself. 

When you add a new transaction to the graph, it confirms the two past ones. 

Transactions for confirmation are selected by a certain algorithm, which checks whether 

these transactions are not contredict and whether they are not accept conflict transactions. 

For further use, the proof of work is similar to that of Adam Beck's HashCash. The work on 

proving the reliability of transactions involves scanning to a value that, when hashed using 

the digest384 algorithm, starts with a certain number of zero trithes. 

 

Figure 2.  Example of adding a new transaction 
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The algorithm for calculating the total weight can be seen in the figure. Each node 

(square) is a transaction, the number at the bottom is the transaction's own weight, the 

number allocated by the bold-cumulative weight. In Figure 2, transaction F is directly or 

indirectly confirmed by transactions A, B, C, E. The total mass F is 9 (1 + 3 + 1 + 1 + 3). 

Transactions A, C are the ends of the graph. X, in the second picture, as they indirectly 

confirm, 3. 

The hash is found and the weights are counted on the one with which the transaction 

was transferred, thereby the device itself is a miner. 

In order for users to have an incentive to actively use the Hive, there is a rating system. 

Having counted the current ratings of the node, you can identify its activity, and depending 

on this, give more, or store preferences in confirming the transactions of this node. It works 

like this: a node does a certain job when making or confirming a transaction. It can be said 

that this work is recorded in the Hive in the form of transactions. Given the time stamps of 

each transaction, you can create an algorithm that will calculate the current node rating. Here 

is an example of one of such algorithms. Take the set of all the transactions of the node for 

a period of time. We assume that for one transaction the node rating is increased by C, 

whereas for one transaction, the rating is reduced by F. Note that the rating cannot be 

negative. Let C be the number of the rating for the transaction, D is the ordered set of such 

elements t-t_c, including the element 0, where t is the transaction timestamp (in days), t_c 

is the current timestamp (in days). Then the node's rating at the current time. 

𝑅 = ∑ 𝑚𝑎𝑥{𝑅 + 𝐶 + 𝐹(𝐷𝑖 − 𝐷𝑖+1),0}𝑛−1
𝑖=1 , где 𝑛 = |𝐷|. 
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EXCHANGE 

 

"Atomic Swap" (atomic swap) is the exchange of cryptocurrencies directly between 

two participants without the participation of a third party. 

Let's say that Alice and Bob want to exchange one cryptocurrency to another. Alice 

transfers her funds to a kind of depository, in which the funds for the exchange will be kept 

until the end of the transaction. To withdraw funds from this cell, you need a secret key and 

Bob's signature. 

Alice generates the private key and its hash. Then Bob asks Alice for this secret key 

and creates a similar cell to store his funds with the same key. Note that, as in the case of 

Alice's cell, Bob cannot open his cell without Alice's signature. At the same time, at this 

stage, Alice already has the opportunity to open Bob's cell by signing it, and get the money 

to her account. When Alice got the money, Bob gets her signature, with which he can open 

the second cell and complete the exchange. 

In the event that one of the participants terminates the deal halfway, the atomic swap 

rejects the deal and returns the funds back to both participants. Smart contract (English 

Smart contract) is just required for making similar transactions. Smart contracts are stored 

in the Hive on the same principle as transactions, and in essence represent a bytecode that 

runs on a Paymon virtual machine (PVM). 

The PVM is a simple stack-based architecture. The word size of the machine (and thus size 

of stack item) is 256-bit. This was chosen to facilitate the Keccak-256 hash scheme and 

elliptic-curve computations. The memory model is a simple word-addressed byte array. The 

stack has a maximum size of 1024. The machine also has an independent storage model; 

this is similar in concept to the memory but rather than a byte array, it is a word-addressable 

word array. Unlike memory, which is volatile, storage is nonvolatile and is maintained as 

part of the system state. All locations in both storage and memory 

are well-defined initially as zero.  

The machine does not follow the standard von Neumann architecture. Rather than 

storing program code in generally-accessible memory or storage, it is stored separately in a 

virtual ROM interactable only through a specialised instruction.  
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The machine can have exceptional execution for several reasons, including stack 

under ows and invalid instructions.  

They do not leave state changes intact. Rather, the machine halts immediately and 

reports the issue to the execution agent (either the transaction processor or, recursively, the 

spawning execution environment) which will deal with it separately. 

 In addition to the system state, and the remaining gas for computation t, there are 

several pieces of important information used in the execution environment that the execution 

agent must provide; these are contained in the tuple I:  

 Ia, the address of the account which owns the code that is executing.  

 Io, the sender address of the transaction that originated this execution. 

 Id, the byte array that is the input data to this execution; if the execution agent is a 

transaction, this would be the transaction data.  

 Is, the address of the account which caused the code to be executing; if the 

execution agent is a transaction, this would be the transaction sender.  

 Iv, the value, in Wei, passed to this account as part of the same procedure as 

execution; if the execution agent is a transaction, this would be the transaction value.  

 Ib, the byte array that is the machine code to be executed. 

The execution model denes the function P, which can compute the resultant state 0, 

the remaining gas g0, the suicide list s, the log series l, the refunds r and the resultant output, 

o, given these denfitions: (σ', t', s, l, r, o) ≡ Ρ (σ, g, I). 

We must now dene the function P. In most practical implementations this will be 

modelled as an iterative progression of the pair comprising the full system state, σ and the 

machine state, μ. Formally, we dene it recursively with a function X. This uses an iterator 

function O (which denes the result of a single cycle of the state machine) together with 

functions Z which determines if the present state is an exceptional halting state of the 

machine and H, specifying the output data of the instruction if and only if the present state 

is a normal halting state of the machine.  

The empty sequence, denoted (), is not equal to the empty set, denoted ∅; this is 

important when interpreting the output of H, which evaluates to ∅ when execution is to 

continue but a series (potentially empty) when execution should halt. 
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𝑃(𝜎, 𝑡, 𝐼)  ≡  𝑋0,1,2,4 ((𝜎, µ,  𝐴0, 𝐼)) 

µ𝑔 ≡  𝑡 

µ𝑝𝑐 ≡  0 

µ𝑚 ≡  (0, 0, . . . ) 

µ𝑖  ≡  0 

µ𝑠  ≡  () 

X (σ, µ, A, I)   ≡  {

(∅, µ,  𝐴0, I, ()),     if  Z(σ, µ, I)                 

O(σ, µ, A, I) · o,     if o ≠ ∅                       

X(O(σ, µ, A, I)),    otherwise                  

 

where 

𝑜 ≡  𝐻(µ, 𝐼) 

(𝑎, 𝑏, 𝑐)  ·  𝑑 ≡  (𝑎, 𝑏, 𝑐, 𝑑) 

 

Note that we must drop the fourth value in the tuple returned by X to correctly 

evaluate P, hence the subscript X0;1;2;4.  

X is thus cycled (recursively here, but implementations are generally expected to use 

a simple iterative loop) until either Z becomes true indicating that the present state is 

exceptional and that the machine must be halted and any changes discarded or until H 

becomes a series (rather than the empty set) indicating that the machine has reached a 

controlled halt. 
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BUSINESS PLATFORM PROFIT 

 

The system has a business platform, through which you can easily connect your own 

store, service, etc. and accept payments for goods or services in the cryptocurrency. On the 

site there is a handy designer, who after the addition of goods / services generates smart 

contracts. These smart contracts provide the work of the platform. 

For example, when a user selects a product or service and clicks to buy, he has a 

choice, show a QR code and pay for the goods on the spot, or choose delivery. In the second 

case, the smart contract will wait until the company confirms the purchase, checks whether 

the user has sufficient funds, and makes an exchange. 

In order to avoid conflicts between the client and the company, it is rated. Each user, 

using the services of the company, can put an estimate from 1 to 5. Also, you can always 

open a chat with this company and discuss the question. Also later, due to the created smart 

contracts inside Hive and Profit, all our users can conduct their own ICO and arrange 

collective fees for any needs. After all, Paymon does not have a commission, and 

transactions have the lightest weight in comparison with competitors. 

Let's consider in detail the question of why we need a cashback and where it comes 

from. Cashback is a kind of reward for the use of services, therefore, it will be taken from 

the account of this company. Depending on the rating, the number of paid tokens (cashback) 

will be equal. 

 

𝑀 = {

A ∗ 0.0005, if R >  10 ∧  R <  25
A ∗ 0.0010, if R ≥  25 ∧  R <  50
A ∗ 0.0015, if R ≥  50 ∧  R <  75
A ∗ 0.0020,           otherwise            

 

 

 


