
TECHNICAL PAPER
Unibr ight – the unified framework

for b lockchain based business integrat ion

team@unibr ight . io

unibr ight . io

Unibright.io Unibright Technical Details 1 / 16

UNIBRIGHT TECHNICAL DETAILS

March 3rd 2018

Stefan Schmidt, Unibright CTO (stefan@unibright.io)

Marten Jung, Unibright CEO (marten@unibright.io)

This document describes the technical details of the underlying concept of the Unibright Framework.

It covers the components, their technical setup, software architectural principals and also presents a

walkthrough with code examples.

This document should be seen as an add-on to the Unibright whitepaper

(https://unibright.io/files/Unibright_Whitepaper.pdf)

Table of Content
Unibright Framework Components ... 2

System setups .. 3

Software Architectural Principles .. 4

System boundaries and data exchange ... 5

Unibright connector and smart adapters .. 6

Walkthrough and Code Examples ... 7

Example Workflow: Request for Quotation-Template ... 7

Workflow Designer representation ... 8

Templates, Workflow, Elements, Activities ... 9

Code-Generation ... 11

Publishing / Deploying ... 13

Smart contract code .. 13

Adapter Configurations ... 13

Smart Query Sets ... 14

Summary and Outlook ... 16

mailto:stefan@unibright.io
mailto:marten@unibright.io

Unibright.io Unibright Technical Details 2 / 16

Unibright Framework Components

The Unibright Framework consists of 4 components:

Workflow Designer (WD) (Web-Application): Visually defining business integration workflows, based

on a use-case specific template

Contract Lifecycle Manager (CLM) (Web-Application): Loading previously defined workflows and

generating smart contract code, smart adapters and smart queries automatically

Connector (UBC) (Background Task with minimal visual frontend): Connecting previously generated

smart contracts to other systems/smart contracts by previously generated smart adapters

Explorer (EX) (Web-Application): Monitoring existing processes by displaying data/information from

generated smart contracts and connecting systems.

Unibright Connector

WD LCM EX

Local BC
Node

IIS / Cloudservice

Local BC
Node

Local BC
Node

Local BC
Node

Blockchain

ERP / Cloud / External
Systems

Fig: Unibright Framework Components

The Unibright Workflow Designer (WD), Contract Lifecycle Manager (CLM) and Explorer (EX) are Web

applications, build with frontend Libraries like React and Rapid. They are developed as Microsoft

asp.net Applications and can be either hosted locally or in the cloud (see “System setups”).

The Unibright Connector (UBC) is based on a Microsoft .NET class library, it connects to blockchain

nodes and external systems.

CLM and EX use UBC to publish and query the blockchains and all connected systems.

Unibright.io Unibright Technical Details 3 / 16

System setups

The Unibright Framework can be run and maintained in different system setups. The decision for a

specific setup is driven by the customer’s needs in terms of access control, network integration,

maintenance and availability.

 “On Premise” (local IIS in company’s IT setup)

a. WD, CLM, and EX are hosted on a local IIS

b. UBC is run by the local IIS

c. UBC connect to local nodes of blockchains to be integrated

d. UBC connects to other systems (ERP) by channels available in the local network

2. Cloud based SAAS

a. WD, CLM and EX are hosted in a pre-defined MS Azure cloud setup

b. UBC is run as an MS Azure Classic Cloudservice

c. UBC connects to blockchain nodes of blockchains to be integrated via the adapters

available on MS azure

d. UBC connects to other systems (e.g. ERP) by channels accessible from MS Azure

3. Cloud based PAAS

(Setup like 2, but pre-setup in a Virtual Machine, possibly run and maintained by a System

Integration Partner.

Unibright.io Unibright Technical Details 4 / 16

Software Architectural Principles

The central part of the Unibright ecosystem is the Unibright Contract Interface (UCI): The UCI defines

the main structure, state variables, mappings and methods which every generated Smart Contract

automatically implements, thus marking a smart contract Unibright conformant. It is the irremovable

guarantee of recognizing smart contracts as part of the Unibright ecosystem, ensuring that Unibright

conformant smart contracts can be found, called, maintained and connected.

Unibright
Contract
Interface

Buiness Case
Templates

Template
Interface

Example
Workflow

Adjusted
Toolset

Smart ContractCustomized
Workflow

implements

implements

Generated Code

Fig: Interfaces and Hierarchy

Content-wise, the UCI offers the fundament to integrate smart contracts into different blockchains and

system landscapes. Operators of the Unibright ecosystem can visually define workflows and choose

from a set of Templates.

Templates pre-define typical business workflows on a high level of abstraction. By choosing a certain

template, the operator is automatically given a suitable subset of all available workflow tool set items

and an initial example workflow which can be customized to the needs of a special use case. Each

template brings its own purpose-built interface, which the generated smart contract will implement in

addition to the basic Unibright Contract Interface.

Unibright.io Unibright Technical Details 5 / 16

System boundaries and data exchange

The Workflow Designer knows the Unibright Templates and presents a basic workflow based on one

of these Templates (combination of Templates will also be available). The integration workflow can be

customized. The current state of work can be stored locally or in the cloud as a JSON representation.

WD has no connection to any blockchain or backend system.

The Contract Lifecycle Manager (CLM) loads a formerly saved JSON workflow representation, being

able to rebuild the graphical representation of the workflow. CLM defines a specific blockchain target,

the type and version of connected systems and the Channels the communication takes place on (see

Adapter section for Details). CLM then creates smart contract code, which can be saved be saved locally

as well. After publishing code to the specific blockchain, smart adapter configurations and smart query

sets are created (XML), they can be stored locally or in the cloud, together with the Workflow

Representation as one package file

The Explorer opens created query sets (XML) to show the information and transaction flow, making

use of the generated smart contract code (targeting Blockchain) and all smart adapters (targeting

connected systems). Query sets can be adjusted and saved as XML files to be used later. Graphical

representations can be saved as PDF or PNG.

The Connector uses the provided XML based adapter configurations to establish the desired

connections to all participating systems, making use of the predefined structure of the Unibright

Contract Interface.

Unibright Templates

Workflows
describing Logic and System Boundaries

Smart Contracts
Automatically generated for

specific blockchain

Smart Adapter Configurations
Automatically generated for

specific connection

UCI

UB Workflow Designer

Smart Query Sets
Automatically generated

UB Connector

Blockchain A Enterprise System B Blockchain C

UB Explorer

UB Contract Lifecycle Manager

Fig: Objects and system components in the Unibright Framework

Unibright.io Unibright Technical Details 6 / 16

Unibright connector and smart adapters

The Unibright Connector (UBC) is based on the coding of the cloud-based process integration platform

PIP, owned by SPO Consulting GmbH (Unibright is a management spin-off) and 100% licenced to

Unibright without any restrictions. PIP is live since 2011, serves productive customers from Banking to

productive sector and moved to Microsoft Azure in 2015, as Software-as-a-Service.

UBC uses endpoints, channels, contract interfaces and mappings:

• An endpoint is the source or destination of an integration process

• A channel is the technical part of a connection between an endpoint and the connector.

Unibright offers

o SOAP based webservices

o REST

o FTP reading (also polling) and writing

o RFC

o SAP IDOC

o Reading/sending data from/via email attachments

o Reading and writing to Databases

o Accessing local blockchain nodes (individual channel per blockchain implementation)

• A contract interface is an object representation for a specific target system (represented by an

endpoint), for example ORDERS01 IDOC in SAP

• A mapping is an xml-based description on mapping and transforming one contract into

another, taking into account object specific constraints on datatypes, data lengths, formatting

and unit systems

Endpoint 1

Contract

UB ConnectorChannel A Channel B

Contract*

Endpoint 2

Mapping Engine

Smart Adapter
Configuration

A smart adapter is a plugin code unit, which is configured by an XML configuration file, telling the

adapter which contract should be send or received on which channel by which mapping. The

configuration files are automatically generated from the designed Templates.

Unibright.io Unibright Technical Details 7 / 16

Walkthrough and Code Examples

This section describes a walkthrough through the process and gives some code examples. The

underlying template has been simplified for explaining the concept rather than explaining code details.

Example Workflow: Request for Quotation-Template

Fig: Example Workflow

The Example given shows the workflow for “Request for Quotation”.

The workflow starts by receiving a “QuotationIN” Object from the UBC. This Object is related to the

Template “Request for Quotation” and holds the specific parameters needed to empower the use case.

It inherits from “Unibright Contract”, the base class that provides basic attributes like a “whitelist”, the

contract Address and static Methods like “Receive” to start the process.

Fig: Example Code for Template related QuotationIN-object

Unibright.io Unibright Technical Details 8 / 16

In the next step of the workflow it is checked if the supplier for this case is fixed. If so (left branch), it

is checked if the whitelist contains the current’s supplier address and the smart contract holding the

supplier logic is called. The Contract result is then evaluated by custom code (given by the template)

and handed to the connector as well. The right branch (supplier is not fixed), iterates through a list of

given supplier smart contract addresses, receiving their quotation (asynchronous) and passing it the

custom code evaluation.

Workflow Designer representation

Fig: JSON-Representation of workflow item

The representation of the workflow is a JSON-serialization. It consists of graphical representations

(position, colours, connections) and of template related attributes (like “type” or “UBContract”). It

holds no code logic and can be saved locally.

Unibright.io Unibright Technical Details 9 / 16

Templates, Workflow, Elements, Activities

When loaded in the Contract Lifecycle Manager, the JSON representation is automatically mapped into

an XML-File, representing a serialized version of a .NET object structure.

This object structure consists of

• “Workflow” class, consisting of Elements and edges

• “WorkflowElement” class, representing a single workflow element consisting of an Activity,

metadata (ID, caption) and pointers to the predecessor(s) and successor(s) in the workflow

• “Activity” class, being the base class for a specific activity in a workflow element, e.g. “Is-True”-

Activity only evaluating a single Boolean expression or “Call Contract”-Activity being able to

call a smart contract function

• “Template” class, holding a basic workflow and a list of allowed Activities for any template

based specific workflow

The classes are built as C# generics, allowing a solid basic architecture.

Fig: Excerpt from C#-Class representing a Workflow

Unibright.io Unibright Technical Details 10 / 16

The XML-object structure of a workflow can be deserialized to an object again. The same object can

be built by a factory in C#:

Fig: Example Code for a Factory building the RFQ-Workflow representation

Unibright.io Unibright Technical Details 11 / 16

Code-Generation

For code generation, a T4-File traverses the object structure and transforms it to platform specific code

[https://msdn.microsoft.com/de-de/en-en/library/ee844259.aspx]

Each destination programming language needs its own T4-File, translating the workflow object

structure into specific code.

The template specific main code is tested and audited for each of the available implementations. The

workflow can be customized in terms of control structure, connecting existing systems and calling

other smart contracts or oracles. These customizations are faced by the code generation files.

The same workflow structure can result in complete different implementations, e.g. .NET and Solidity.

Fig: Generated C# code out of RFQ-Workflow

Unibright.io Unibright Technical Details 12 / 16

Fig: Excerpt of generated solidity code out of RFQ workflow

Unibright.io Unibright Technical Details 13 / 16

Publishing / Deploying

Smart contract code

The compiled smart contract code can be published via the Contract Lifecycle Manager (CLM). The

CLM is connected to a local blockchain node via the Unibright Connector. For Ethereum, the web3.js-

Library is used to deploy the smart contract.

Fig: Deploying an Ethereum Smart Contract to a local node

Adapter Configurations

Knowing the address of the published smart contract(s), the access information to the connected

systems, the contract interfaces on each part of the system landscape and the mapping information to

transform different contract interfaces into each other (as part of the Template), the smart adapter

configuration can be published to the Unibright Connector.

Depending on the defined role in the Workflow, the smart adapter either

• Defines an endpoint within the Unibright Connector, ready to be “called” (e.g. a Webservice)

• Defines an endpoint within the Unibright Connector polling a source (e.g. an FTP Server)

• Defines an endpoint within the Unibright Connector calling an external source (e.g. sending an

IDOC or calling a smart contract function)

The different channels for different connection techniques are implemented in the source base of the

Unibright Connector. The smart adapter configurations tell the system how to connect using one of

the available channels.

Unibright.io Unibright Technical Details 14 / 16

Fig: Sending an IDOC from the Unibright Connector to a SAP PI

Smart Query Sets

Knowing all adapter configurations, the Unibright contract interface and the template related specific

interfaces, smart query sets are also generated by the Contract Lifecycle Manager.

It targets template specific questions, independently from the data source they belong to. Staying with

the example of “Request for Quotation” such a question could be: “Show me all quotation results for

product 123 that were fulfilled by supplier ABC”.

The Unibright Explorer handles this question (and the resulting graphical representation) via one place

of accessing all relevant data: The Unibright Connector, querying transactions in a specific blockchain

and performing queries on the connected systems, from the “old world” (e.g. FTP) to the new world

of smart contracts.

Fig: Querying a list of transactions of a Smart Contract

Unibright.io Unibright Technical Details 15 / 16

Fig: FTP reading within the Unibright Connector

Unibright.io Unibright Technical Details 16 / 16

Summary and Outlook

This document gave an insight of the different components of the Unibright Framework and a

walkthrough for the example-Usecase “Request for Quotation”: From the use-case related template,

a basic integration workflow can be customized. Based on software architectural principles like

Interfaces (“The Unibright Contract Interface”) all needed objects to run and monitor the ongoing

business process are generated automatically.

Use Case Proven
Template

Customized
Workflow

Smart
Contracts

Smart Adapter
Configurations

Smart
QuerySets

Fig: From use case to generated objects

For further information (not only about technical details) on the Unibright Framework:

• Visit unibright.io

• Get more insights on use cases in our blog (https://medium.com/@UnibrightIO)

• Download the whitepaper (https://unibright.io/files/Unibright_Whitepaper.pdf)

• Join the telegram group: https://t.me/unibright_io

• Get in contact with the team: team@unibright.io

• Meet us in person on conferences and meetups (see our website for details)

