 UNIBRIGHT .

TECHNICAL PAPER
Unibright - tﬁé Lij'h'ifieﬂd‘framework
for blockchain ba"sed.’*b‘usiness integration

@&

unibright.io

|
team@unibright.io

UNIBRIGHT TECHNICAL DETAILS

March 3 2018

Stefan Schmidt, Unibright CTO (stefan@unibright.io)

Marten Jung, Unibright CEO (marten@unibright.io)

This document describes the technical details of the underlying concept of the Unibright Framework.
It covers the components, their technical setup, software architectural principals and also presents a
walkthrough with code examples.

This document should be seen as an add-on to the Unibright whitepaper
(https://unibright.io/files/Unibright_Whitepaper.pdf)

Table of Content

Unibright Framework COMPONENTS.......c.uuiiiiciiieeeciieeeecitee e sttt e e sstee e e ssraeeessaraeeessnsaeeessssaeesssnsaeeesnsseeesas 2
N (=] BT (VT o L PPPPPPPPPTPTPRE 3
Software Architectural PrinCIPIES........uee i e e e e ee e e et e e e e eareeas 4
System boundaries and data @XChANGE........ccoo i i e e e e et e e e 5
Unibright connector and SMart @daplers.........uieccciiee i e e e e eaa e e e e etae e e s treeeeesaeeeean 6
Walkthrough and Code EXamMPIESeeiiiiiiiiiiiiie e cciiee e ceiee ettt e e see e e esaree e e e eabae e e s sabeee e ssabeeeeenaseeas 7
Example Workflow: Request for Quotation-Templatecccccceeeeieiiicciee e 7
Workflow Designer repreSeNtation...........cccuiieiiciiiee ettt e e et e e e et e e e eeaba e e e e enbee e e eeabaeeeenareeas 8
Templates, Workflow, Elements, ACHIVITIES.........cccuiii i 9
(0o Te LRl CT=T oI T | 4T o OO PRTOTRROTRRPR 11
PUDBIISNING / DEPIOYING...cvieitiieieeieeteeteeste ettt ettt e st e st e s b e e beeebe e beesbeesbaestaeeaseeabeesbeessaesteesanesaneens 13
Y g F LA ole] g1 1 - Tot i ol Lo [PPSO P PRSPPI 13
F Vo Fo o] (T o 0o Yo T ={U] =Y d o] o RSP RT 13
Y £ =T A O LU T=T Y= NS 14
SUMMATY @Nd OULIOOK. ... eiiiiiciiiee e e et e et e e e st e e e e ebteeessbtaeeesstaeeessseeessnnes 16

Unibright.io Unibright Technical Details 1/16

mailto:stefan@unibright.io
mailto:marten@unibright.io

Unibright Framework Components

The Unibright Framework consists of 4 components:

Workflow Designer (WD) (Web-Application): Visually defining business integration workflows, based

on a use-case specific template

Contract Lifecycle Manager (CLM) (Web-Application): Loading previously defined workflows and

generating smart contract code, smart adapters and smart queries automatically

Connector (UBC) (Background Task with minimal visual frontend): Connecting previously generated

smart contracts to other systems/smart contracts by previously generated smart adapters

Explorer (EX) (Web-Application): Monitoring existing processes by displaying data/information from

generated smart contracts and connecting systems.

LCM EX

Unibright Connector

IIS / Cloudservice

Local BC Local BC Local BC Local BC
Node Node Node Node
Blockchain

Fig: Unibright Framework Components

Systems

_ ERP / Cloud / External

The Unibright Workflow Designer (WD), Contract Lifecycle Manager (CLM) and Explorer (EX) are Web
applications, build with frontend Libraries like React and Rapid. They are developed as Microsoft

asp.net Applications and can be either hosted locally or in the cloud (see “System setups”).

The Unibright Connector (UBC) is based on a Microsoft .NET class library, it connects to blockchain

nodes and external systems.

CLM and EX use UBC to publish and query the blockchains and all connected systems.

Unibright.io

Unibright Technical Details

2/16

System setups

The Unibright Framework can be run and maintained in different system setups. The decision for a
specific setup is driven by the customer’s needs in terms of access control, network integration,
maintenance and availability.

“On Premise” (local IIS in company’s IT setup)

WD, CLM, and EX are hosted on a local IIS

UBC is run by the local IIS

UBC connect to local nodes of blockchains to be integrated

UBC connects to other systems (ERP) by channels available in the local network

o 0 T W

2. Cloud based SAAS
a. WD, CLM and EX are hosted in a pre-defined MS Azure cloud setup
b. UBCis run as an MS Azure Classic Cloudservice
c. UBC connects to blockchain nodes of blockchains to be integrated via the adapters
available on MS azure
d. UBC connects to other systems (e.g. ERP) by channels accessible from MS Azure

3. Cloud based PAAS

(Setup like 2, but pre-setup in a Virtual Machine, possibly run and maintained by a System
Integration Partner.

Unibright.io Unibright Technical Details 3/16

Software Architectural Principles

The central part of the Unibright ecosystem is the Unibright Contract Interface (UCI): The UCI defines
the main structure, state variables, mappings and methods which every generated Smart Contract
automatically implements, thus marking a smart contract Unibright conformant. It is the irremovable
guarantee of recognizing smart contracts as part of the Unibright ecosystem, ensuring that Unibright
conformant smart contracts can be found, called, maintained and connected.

| |
Buiness Case Template Légi:trrig::
Templat
emplates Interface Interface
Y Y
Example Adjusted ;
Workflow Toolset implements i
\ | |
implements
Customized | conorated Code = Smart Contract
Workflow

Fig: Interfaces and Hierarchy

Content-wise, the UCI offers the fundament to integrate smart contracts into different blockchains and
system landscapes. Operators of the Unibright ecosystem can visually define workflows and choose
from a set of Templates.

Templates pre-define typical business workflows on a high level of abstraction. By choosing a certain
template, the operator is automatically given a suitable subset of all available workflow tool set items
and an initial example workflow which can be customized to the needs of a special use case. Each
template brings its own purpose-built interface, which the generated smart contract will implement in
addition to the basic Unibright Contract Interface.

Unibright.io Unibright Technical Details 4/16

System boundaries and data exchange

The Workflow Designer knows the Unibright Templates and presents a basic workflow based on one
of these Templates (combination of Templates will also be available). The integration workflow can be
customized. The current state of work can be stored locally or in the cloud as a JSON representation.
WD has no connection to any blockchain or backend system.

The Contract Lifecycle Manager (CLM) loads a formerly saved JSON workflow representation, being
able to rebuild the graphical representation of the workflow. CLM defines a specific blockchain target,
the type and version of connected systems and the Channels the communication takes place on (see
Adapter section for Details). CLM then creates smart contract code, which can be saved be saved locally
as well. After publishing code to the specific blockchain, smart adapter configurations and smart query
sets are created (XML), they can be stored locally or in the cloud, together with the Workflow
Representation as one package file

The Explorer opens created query sets (XML) to show the information and transaction flow, making
use of the generated smart contract code (targeting Blockchain) and all smart adapters (targeting
connected systems). Query sets can be adjusted and saved as XML files to be used later. Graphical
representations can be saved as PDF or PNG.

The Connector uses the provided XML based adapter configurations to establish the desired
connections to all participating systems, making use of the predefined structure of the Unibright
Contract Interface.

Unibright Templates

Workflows
describing Logic and System Boundaries

UB Workflow Designer

UB Contract Lifecycle Manager

Smart Contracts Smart Adapter Configurations
Automatically generated for Automatically generated for
specific blockchain specific connection

Smart Query Sets
Automatically generated

y

UB Explorer

UB Connector

\d

Blockchain A Enterprise System B Blockchain C

Fig: Objects and system components in the Unibright Framework

Unibright.io Unibright Technical Details 5/16

Unibright connector and smart adapters

The Unibright Connector (UBC) is based on the coding of the cloud-based process integration platform

PIP, owned by SPO Consulting GmbH (Unibright is a management spin-off) and 100% licenced to

Unibright without any restrictions. PIP is live since 2011, serves productive customers from Banking to

productive sector and moved to Microsoft Azure in 2015, as Software-as-a-Service.

UBC uses endpoints, channels, contract interfaces and mappings:

e An endpoint is the source or destination of an integration process

e A channel is the technical part of a connection between an endpoint and the connector.
Unibright offers

O O O O O O

@)

SOAP based webservices

REST

FTP reading (also polling) and writing

RFC

SAP IDOC

Reading/sending data from/via email attachments

Reading and writing to Databases

Accessing local blockchain nodes (individual channel per blockchain implementation)

e A contract interface is an object representation for a specific target system (represented by an
endpoint), for example ORDERSO1 IDOC in SAP
e A mapping is an xml-based description on mapping and transforming one contract into

another, taking into account object specific constraints on datatypes, data lengths, formatting

and unit systems

Contract [~ >| Mapping Engine } ”””””””””””””””””””” > Contract*
Endpoint 1 ———Channel A~—| UB Connector |——Channel B—¥; Endpoint 2
Smart Adapter

Configuration

A smart adapter is a plugin code unit, which is configured by an XML configuration file, telling the

adapter which

contract should be send or received on which channel by which mapping. The

configuration files are automatically generated from the designed Templates.

Unibright.io

Unibright Technical Details 6/16

Walkthrough and Code Examples

This section describes a walkthrough through the process and gives some code examples. The

underlying template has been simplified for explaining the concept rather than explaining code details.

Example Workflow: Request for Quotation-Template

Unibright
RFQ intertec V2.0
[Request for Guotation]

Fig: Example Workflow

The Example given shows the workflow for “Request for Quotation”.

The workflow starts by receiving a “QuotationIN” Object from the UBC. This Object is related to the
Template “Request for Quotation” and holds the specific parameters needed to empower the use case.
It inherits from “Unibright Contract”, the base class that provides basic attributes like a “whitelist”, the
contract Address and static Methods like “Receive” to start the process.

58 = rp

59 {

hch O Ch o h Ch
[= Y B =TV N)

78
71
72

73 L3
74

ublic class QuotationIN : UnibrightContract
private bool supplierFixed;
private string supplierAddress;
private string material;
private string unit;
private decimal amount;
private DateTime latestDeliveryDate;
public bool SupplierFixed { get => supplierFixed; set => supplierfixed = value; }
public string SupplierAddress { get =» supplierAddress; set =» supplierAddress = value; }
public string Material { get => material; set => material = value; }
public string Unit { get => unit; set => unit = value; }
ﬁuﬁiicuaecimal Amount { get => amount; set =»> amount = value; }
public ime LatestDeliveryDate { get => latestDeliveryDate; set =»> latestDeliveryDate = value; }

Fig: Example Code for Template related QuotationIN-object

Unibright.io

Unibright Technical Details 7/16

In the next step of the workflow it is checked if the supplier for this case is fixed. If so (left branch), it
is checked if the whitelist contains the current’s supplier address and the smart contract holding the
supplier logic is called. The Contract result is then evaluated by custom code (given by the template)
and handed to the connector as well. The right branch (supplier is not fixed), iterates through a list of
given supplier smart contract addresses, receiving their quotation (asynchronous) and passing it the
custom code evaluation.

Workflow Designer representation

1- |

2~ "activities™: [

= {

4 "id": "¥YclsrUtEih",
ERs "hover™: {

6 "opacity”: @.2

7

8 "cursor™: "pointer”,
9~ "content™: {

18 "align": "center middle"”,
11 "color™: "#2e2ele"
12

13 "selectable": ,
14 "serializable™: ,
15 "enable": .,

16 "type": "Receive”,
17 "UBcontract™: "QuotationIN™,
18 "path": "7,

19 "autosize": .
28 "vizual™: null,

21 "x": 548,

22 "y": 638,

23 "minkiidth": 2@,

24 "minHeight": 2@,

25 "width": 128,

26 "height™: 12@,

27~ "editable™: {

28 "connect": .
29 "tools": [],

R "drag”: {

31~ "snap": |

32 "size": 1@,
33 "angle": 1@
34 }

33 :'.1

36 "remove":

Fig: JSON-Representation of workflow item

The representation of the workflow is a JSON-serialization. It consists of graphical representations
(position, colours, connections) and of template related attributes (like “type” or “UBContract”). It
holds no code logic and can be saved locally.

Unibright.io Unibright Technical Details 8/16

Templates, Workflow, Elements, Activities

When loaded in the Contract Lifecycle Manager, the JSON representation is automatically mapped into
an XML-File, representing a serialized version of a .NET object structure.

This object structure consists of

o “Workflow” class, consisting of Elements and edges

o “WorkflowElement” class, representing a single workflow element consisting of an Activity,
metadata (ID, caption) and pointers to the predecessor(s) and successor(s) in the workflow

e “Activity” class, being the base class for a specific activity in a workflow element, e.g. “Is-True”-
Activity only evaluating a single Boolean expression or “Call Contract”-Activity being able to
call a smart contract function

o “Template” class, holding a basic workflow and a list of allowed Activities for any template
based specific workflow

The classes are built as C# generics, allowing a solid basic architecture.

9 Jnamespace Unibright.Workflows

19 {

11 = #region Workflows

12

13 Bl -public class Workflow

14 {

15 private List<Workflow =nt> elements = new List<WorkflowElement>();

16 private List<Tuple<WorkflowElement, WorkflowElement, EdgeType>> orientedEdges = new List<Tuple<WorkflowElement, WorkflowElement, Edg
18 E internal void AddWorkflowElement<T>(T activity) where T : Activity

19 {

20 var we = new WorkflowElement(activity, "");

21 .elements.Add(we);

22 3}

23

24 E private WorkflowElement GetWorkflowElementByActivity(Activity a)

25 {

26 var element = elements.FirstOrDefault(e => e.Activity == a);

27 = if (element == null)

28 {

29 element = new WorkflowElement(a, "");

30 elements.Add (element);

31 1

32 return element;

33 }

34

35 E internal void AddTrueFalseEdge<T»(AT_Conditioned<T» istrue_activity, Activity result activity, bool isTrue) where T : UnibrightCont
36 {

37 var istrue_element = GetWorkflowElementByActivity(istrue_activity);
38 var result_element = GetWorkflowElementByActivity(result_activity);
39

40 istrue_element.Successors.Add{result_element);

41 result_element.Predecessors.Add(istrue_element);

42

43 var edgetype = EdgeType.False;

- if (isTrue)

45 edgetype = EdgeType.False;

46

47 orientedEdges .Add(new Tuple<WorkflowElement, WorkflowElement, EdgeType>(istrue_element, result_element, edgetype));
as 3

a0

5@ = internal void AddEdge(Activity source_activity, Activity result_activity)
51 {

52 var source_eslement = GetWorkflowElementByActivity(source_activity);
53 var result_element = GetWorkflowElementByActivity(result_activity);
54

55 source_element.Successors.Add{result_element);

56 result_element.Predecessors.Add(source_element);

57

58 orientedEdges.Add(new Tuple<WorkflowElement, WorkflowElement, EdgeType>(source_element, result_element, EdgeType.Directed));
59 3

Fig: Excerpt from C#-Class representing a Workflow

Unibright.io Unibright Technical Details 9/16

The XML-object structure of a workflow can be deserialized to an object again. The same object can
be built by a factory in C#:

209 = ~try
210 {
211 Workflow rfqWorkflow = new Workflow();
212
213 var a_start = new AT_Start();
214 var a_receive = new AT_Receive<QuotationIN>();
215 var quotationIN = a_receive.Receive();
216
217 var a_istrue = new AT_IsTrue<QuotationIN>(p => p.SupplierFixed);
218 var a_contains = new AT_Contains<string, QuotationIN>
219 (quotationIN.Whitelist.Select(wh => wh.ContractAddress).ToList(), p => p.SupplierAddress);
220 var a_rollback = new AT_Rollback();
221 var a_callContract = new AT_CallContract<QuotationIN, QuotationSupplier, QuotationOUT>
222 |(p => UnibrightContract.Receive<QuotationSupplier>(p.SupplierAddress), p => p.GetQuotation(quotationIN));
223 var a_codelogic = new AT_Codelogic<QuotationOUT>();
224
225 rfgWorkflow.AddworkflowElement(a_start);
226 rfqWorkflow.AddwWorkflowElement(a_receive);
227 rfgWorkflow.AddEdge(a_start, a_receive);
228
229 rfgWorkflow.AddWorkflowElement(a_istrue);
230 rfquorkflow.AddEdge(a_receive, a_istrue);
231
232 rfgWorkflow.AddworkflowElement(a_contains);
233 rfgWorkflow.AddTrueFalseEdge(a_istrue, a_contains, true);
234
235 rfqWorkflow.AddWworkflowElement(a_rollback);
236 rfgWorkflow.AddTrueFalseEdge(a_contains, a_rollback, true);
237
Fig: Example Code for a Factory building the RFQ-Workflow representation
Unibright.io Unibright Technical Details 10/16

Code-Generation

For code generation, a T4-File traverses the object structure and transforms it to platform specific code
[https://msdn.microsoft.com/de-de/en-en/library/ee844259.aspx]

Each destination programming language needs its own T4-File, translating the workflow object
structure into specific code.

The template specific main code is tested and audited for each of the available implementations. The
workflow can be customized in terms of control structure, connecting existing systems and calling
other smart contracts or oracles. These customizations are faced by the code generation files.

The same workflow structure can result in complete different implementations, e.g. .NET and Solidity.

// WORKFLOW GENERATION #2565-7433 Transaction
using (UnibrightTransaction ubt = UnibrightContract.StartTransaction())
{
// WORKFLOW GENERATION #2565-7436 Receive
QuotationIN quotationIN = UnibrightContract.Receive<QuotationIN>();
string bestQuote_adr = ™"}
// WORKFLOW GENERATION #2565-7439 IsTrue - YES
if (quotationIN.SupplierFixed)
{
/{ WORKFLOW GENERATION #2565-7447 Contains - YES
if (quotationIN.whitelist.Select(w => w.ContractAddress).Contains(quotationIN.Supplieraddress))

{
// WORKFLOW GENERATION #2565-7451 Call Contract
var supplier = UnibrightContract.Receive<QuotationSupplier>(quotationIN.Supplieraddress);
var result = supplier.GetQuotation{guotationIN.Material, quotationIN.Unit, guotationIN.Amount, gquotationIN.LatestDeliveryDate);
// WORKFLOW GENERATION #2565-7891 CustomCode
bestQuote_adr = CustomCode.GetBestQuote(result);
// WORKFLOW GENERATION #2565-7434 Confirm
ubt.Confirm();
}
/{ WORKFLOW GENERATION #2565-7447 Contains - YES
else
// WORKFLOW GENERATION #2565-7435 Confirm
ubt.Rollback();
}
1
// WORKFLOW GENERATION #2565-7439 IsTrue - NO
else
{

/{ WORKFLOW GENERATION #2565-7462 Foreach
List<ContractResult<QuotationOUT»> results = new List<ContractResult<QuotationOUT>>();
foreach (var item in quotationIN.Whitelist.Select(w => w.ContractAddress))

// WORKFLOW GENERATION #2565-7452 Call Contract
var supplier = UnibrightContract.Receive<QuotationSupplier>(quotationIN.SupplierAddress);
results.Add(supplier.GetQuotation(quotationIN.Material, quotationIN.Unit, gquotationIN.Amount, gquotationIN.LatestDeliveryDate));

// WORKFLOW GENERATION #2565-7891 CustomCode
bestQuote_adr = CustomCode.GetBestQuote(results.ToArray());

// WORKFLOW GENERATION #2565-7434 Confirm
ubt.Confirm();

Fig: Generated C# code out of RFQ-Workflow

Unibright.io Unibright Technical Details 11/16

processQuotationIn(articleid, quantity, deliveron,

proxy;
result;
supplierAdr;

if ((fixedsupplierAddr)).length > 8
(((PP) gt

articleid = "";

9(supplierAdr);

result = proxy.r (articleid, quantity, deliveron);

proxy);

8; x < callbacks.length ; »x++) {

proxy pplierF
result = proxy.

callbacks[x]);
(articleid, quantity, deliveron);

(proxy);

(proxy);

Fig: Excerpt of generated solidity code out of RFQ workflow

fixedsupplierAddr) onlyOwner {

Unibright.io Unibright Technical Details

12/16

Publishing / Deploying
Smart contract code

The compiled smart contract code can be published via the Contract Lifecycle Manager (CLM). The
CLM is connected to a local blockchain node via the Unibright Connector. For Ethereum, the web3.js-
Library is used to deploy the smart contract.

125 - rpublic async Task<string> DeploySmartContract(string bytecode, string abi, params object[] p)
126 {

127

128 var mineResult = await web3.Miner.Start.SendRequestAsync(2).ConfigureAwait(false);

129

130 var receipt = await web3.Eth.DeployContract.SendRequestAndWaitForReceiptAsync

131 (abi, bytecode, _accountAddress, new HexBigInteger(900000), null, p).ConfigureAwait(false);
132

133 var mineResult2 = await web3.Miner.Stop.SendRequestAsync().ConfigureAwait(false);

134

135 var contractadr = receipt.ContractAddress;

136

137 return contractadr;

138

139 Ly

Fig: Deploying an Ethereum Smart Contract to a local node

Adapter Configurations

Knowing the address of the published smart contract(s), the access information to the connected
systems, the contract interfaces on each part of the system landscape and the mapping information to
transform different contract interfaces into each other (as part of the Template), the smart adapter
configuration can be published to the Unibright Connector.

Depending on the defined role in the Workflow, the smart adapter either

e Defines an endpoint within the Unibright Connector, ready to be “called” (e.g. a Webservice)

e Defines an endpoint within the Unibright Connector polling a source (e.g. an FTP Server)

o Defines an endpoint within the Unibright Connector calling an external source (e.g. sending an
IDOC or calling a smart contract function)

The different channels for different connection techniques are implemented in the source base of the
Unibright Connector. The smart adapter configurations tell the system how to connect using one of
the available channels.

Unibright.io Unibright Technical Details 13/16

89

try

#region Custom Binding and Channel Factory
CustomBinding binding = new CustomBinding();
binding.Elements.Add(new TextMessageEncodingBindingElement(MessageVersion.Soapll, Encoding.UTF8));

HttpsTransportBindingElement transport = new HttpsTransportBindingElement();
transport.AuthenticationScheme = AuthenticationSchemes.Basic;
transport.ProxyAuthenticationScheme = AuthenticationSchemes.Basic;
transport.Realm = "XISOAPApps";

binding.Elements.Add(transport);

binding.SendTimeout = TimeSpan.FromSeconds(60);

EndpointAddress address = new EndpointAddress(GetSetting(SettingKeys.DGVPI_ENDPOINTADDRESS));

ChannelFactory<SI_OB_ASYNC_DELVRY> factory = new ChannelFactory<SI_OB_ASYNC_DELVRY>(binding, address);
factory.Credentials.UserName.UserName = GetSetting(SettingKeys.DGVPI_USER);
factory.Credentials.UserName.Password = GetSetting(SettingKeys.DGVPI_PASS);

#endregion

SI_OB_ASYNC_DELVRY client = factory.CreateChannel();
var d = new SI_OB_ASYNC_DELVRY1();

try
{
DELVRY@3 delivery = new DELVRYB3();
d.DELVRY®3 = createDelvry@3FromOpenStorageFile(action.PayloadIN, action.ActionID.ToString());

await client.SI_OB_ASYNC_DELVRYAsync(d);

ret.Success = true;

Fig: Sending an IDOC from the Unibright Connector to a SAP P|

Smart Query Sets

Knowing all adapter configurations, the Unibright contract interface and the template related specific

interfaces, smart query sets are also generated by the Contract Lifecycle Manager.

It targets template specific questions, independently from the data source they belong to. Staying with

the example of “Request for Quotation” such a question could be: “Show me all quotation results for
product 123 that were fulfilled by supplier ABC”.

The Unibright Explorer handles this question (and the resulting graphical representation) via one place

of accessing all relevant data: The Unibright Connector, querying transactions in a specific blockchain

and performing queries on the connected systems, from the “old world” (e.g. FTP) to the new world

of smart contracts.

183
184
185
186
187
188
189
19@
191
192

public async Task<List<FilterLog>> queryTransactionsOfContract(string contractaddress, string abi)

{

var newEthFilter
var filterreturn

var contract = web3.Eth.GetContract(abi, contractaddress);

var blocknumber = await web3.Eth.Blocks.GetBlockNumber.SendRequestAsync().ConfigureAwait(false);
var ethFilterInput = new NewFilterInput();

ethFilterInput.FromBlock.SetValue(new HexBigInteger(@));

ethFilterInput.ToBlock.SetValue(new HexBigInteger(blocknumber));

ethFilterInput.Address = new[] { contractaddress };

await web3.Eth.Filters.NewFilter.SendRequestAsync(ethFilterInput).ConfigureAwait(false);
await web3.Eth.Filters.GetFilterChangesForEthNewFilter.SendRequestAsync(newEthFilter).ConfigureAwait(false);

return filterreturn.TolList();

Fig: Querying a list of transactions of a Smart Contract

Unibright.io

Unibright Technical Details 14/ 16

119
120
121
122
123

124
125
126
127

string FTPSERVER = SystemRepository.GetBusinessCaseSpecificSetting(SettingKeys.FTPSERVER.ToString(), BUSINESSCASE);
string FTPRENAME = SystemRepository.GetBusinessCaseSpecificSetting(SettingKeys.FTPRENAME.ToString(), BUSINESSCASE);
string FTPUSER = SystemRepository.GetBusinessCaseSpecificSetting(SettingKeys.FTPUSER.ToString(), BUSINESSCASE);

string FTPPASSWORD = SystemRepository.GetBusinessCaseSpecificSetting(SettingKeys.FTPPASSWORD.ToString(), BUSINESSCASE);

List<string> allFiles = PIPHelper.GetFileListFromFTP(FTPSERVER, FTPUSER, FTPPASSWORD);

PIPHelper.cs

159
160
161
162
163
164
165
166
167
168
169
17e
171
172
173
174
175

177
178
179
180
181

public static List<string> betFileListFromFTF(string FTPAddress, string username, string password)

{

List<string> files = new List<string>();

try
{

//Create FTP request

FtpWebRequest request = FtpWebRequest.Create(FTPAddress) as FtpWebRequest;
request.Method = WebRequestMethods.Ftp.ListDirectory;

request.Credentials = new NetworkCredential(username, password);
request.UsePassive = true;

request.UseBinary = true;

request.KeepAlive = false;

FtpWebResponse response = request.GetResponse() as FtpWebResponse;

using (Stream resp ream = resp .Get tream())

{

using (StreamReader reader = new StreamReader(responseStream))
while (!reader.EndOfStream)

files.Add(reader.ReadlLine());

Fig: FTP reading within the Unibright Connector

Unibright.io

Unibright Technical Details

15/16

Summary and Outlook

This document gave an insight of the different components of the Unibright Framework and a
walkthrough for the example-Usecase “Request for Quotation”: From the use-case related template,
a basic integration workflow can be customized. Based on software architectural principles like
Interfaces (“The Unibright Contract Interface”) all needed objects to run and monitor the ongoing

business process are generated automatically.

Smart
Contracts

Smart Adapter

Configurations

Proven Customized QuerySets
Template Workflow

Fig: From use case to generated objects

For further information (not only about technical details) on the Unibright Framework:

e Visit unibright.io

e Get more insights on use cases in our blog (https://medium.com/@Unibright|O)
e Download the whitepaper (https://unibright.io/files/Unibright_Whitepaper.pdf)
e Join the telegram group: https://t.me/unibright_io

e Get in contact with the team: team@unibright.io

e Meet us in person on conferences and meetups (see our website for details)

Unibright.io Unibright Technical Details 16 /16

