
In this document I propose an autonomous decentralised crypto-currency mixing
and privacy mechanism by use of deterministically elected relay nodes or by use
of neighboring nodes.

cbjoin_t - A join message.
cbstatus_t - A status message.
cbbroadcast_t - A broadcast message.
cbleave_t - A leave message.

Bitcoin transactions are made up of inputs and outputs. The way these inputs and
outputs are arranged makes them inherently traceable through blockchain
analysis. Because of this Bitcoin also lacks the properties of fungibility.

Fungibility is the property of a good or a commodity whose individual units are
capable of mutual substitution. That is, it is the property of essences or goods
which are capable of being substituted in place of one another[1].

By lacking the properties of fungibility certain Bitcoin may be selectively blocked

ChainBlender: An autonomous
crypto-currency mixing and
anonymizing mechanism.

Abstract

Definitions

Background



or rejected due to the previous transaction history associated with it.

By using common denominations and merging multiple similar inputs and outputs
in a random order we are able to form a single transaction from multiple parties by
relaying these operations in an encrypted manner by use of Elliptic Curve Diffie–
Hellman Exchange (ECDHE)[4] between participants and blending them on the
client-side. In this way the middle-man is reduced to a blind relay and the
participants would be unable to reconstruct the original inputs from the blended
transaction. Because of this it makes for a truly untraceable system offering a high
degree of anonymity without counter-party risk.

General Overview





typedef struct cbjoin_s
{
    sha256 hash_session_id;
    int64_t denomination;
} cbjoin_t;

Message Structures



typedef struct cbstatus_s
{
    sha256 hash_session_id;
    uint8_t code;
    uint8_t participants;
    uint16_t flags;
} cbstatus_t;

typedef struct cbbroadcast_s
{
    sha256 hash_session_id;
    uint16_t type;
    uint16_t length;
    char * value;
} cbbroadcast_t;

typedef struct cbleave_s
{
    sha256 hash_session_id;
} cbleave_t;

typedef enum cbstatus_code_s
{
    cbstatus_code_none = 0,
    cbstatus_code_accepted = 1,
    cbstatus_code_declined = 2,
    cbstatus_code_ready = 3,
    cbstatus_code_update = 4,
    cbstatus_code_error = 0xfe,
} cbstatus_code_t;

Message Codes

Broadcast Types



typedef enum cbbroadcast_type_s
{
    cbbroadcast_type_none = 0,
    cbbroadcast_type_ecdhe = 1,
    cbbroadcast_type_ecdhe_ack = 2,
    cbbroadcast_type_tx = 3,
    cbbroadcast_type_tx_ack = 4,
    cbbroadcast_type_sig = 5,
    cbbroadcast_type_sig_ack = 6,
} cbbroadcast_type_t;

typedef struct cb_ecdhe_s
{
    key_public public_key;
} cb_ecdhe_t;

enum { K = 8 };
enum { N = 2 };

typedef struct cb_tx_s
{
    varint count;
    vector< tuple<varint, vector<uint8_t>, checksum > > cb_txs_encrypted;
} cb_tx_t;

typedef struct cb_sig_s
{
    varint count;
    vector< tuple<varint, vector<uint8_t>, checksum > > cb_sigs_encrypted;
} cb_sig_t;

Broadcast Structures

Active Mixing



1. Connect to one of the K closest elected blender relay nodes.
2. Send a cbjoin_t with a null hash_session_id and the denominated amount

you wish to submit.
3. If the blender node responds with a cbstatus_code_t with a type of

cbstatus_code_accepted and a valid hash_session_id continue to step 4.
otherwise start over at step 1.

4. Wait for a cbstatus_code_t with a type of cbstatus_code_ready (at least N
participants will have joined the session).

5. Send a cbbroadcast_type_t with a type of cbbroadcast_type_ecdhe.
6. Wait for all session participants to broadcast their cbbroadcast_type_ecdhe

message via receipt of cbbroadcast_type_ecdhe_ack.
7. Derive the ECDHE shared secrets for all session participants.
8. Send a cbbroadcast_type_t with a type of cbbroadcast_type_tx containing an

encrypted transaction for each session participant.
9. Wait for all session participants to broadcast their cbbroadcast_type_tx

message via receipt of cbbroadcast_type_tx_ack.
10. When all of the transactions are received from all session participants they

may be locally blended.
11. Send a cbbroadcast_type_t with a type of cbbroadcast_type_sig containing

the updated signatures for the blended transaction.
12. Wait for all session participants to broadcast their cbbroadcast_type_sig

message via receipt of cbbroadcast_type_sig_ack.
13. Once the transactions have been blended the resulting transaction SHOULD

be broadcast to the network and a ZeroTime[2] lock should be placed on it's
inputs.

14. Send a cbleave_t and disconnect from the blender relay node.

Each participant generates the blended transaction as follows:

Client-Side Procedures



Each participant orders the blended transactions as follows:

Each participant sends a cbleave_t and disconnects from the blender relay node
broadcasting both the transaction and a ZeroTime[2] lock on it's inputs. The
process MAY repeat for unblended coins.

Passive mixing is identical to active mixing with the only difference being that the
relay node is one of the N nodes currently connected to each other. Instead of
sending the cbjoin_t message to an elected blender relay node it is instead sent to
each currently connected node one at a time until a cbstatus_code_accepted is
received.

transaction tx_blended;

for (auto & i : session.transactions)
{
    tx_blended.ins().insert(
        tx_blended.ins().end(), i.ins().begin(), i.ins().end()
    );

    tx_blended.outs.insert(
        tx_blended.outs().end(), i.outs().begin(), i.outs().end()
    );
}

std::sort(tx_blended.ins().begin(), tx_blended.ins().end(),
    [](const in & a, const in & b) -> bool
{ 
    return a.previous_out().hash() > b.previous_out().hash();
});

random_device rd;
mt19937 g(rd());

random_shuffle(tx_blended.outs().begin(), tx_blended.outs().end(), g);

Passive Mixing



The participant to first broadcast and lock their blended transaction will have it
respected by the network, all other transactions will be rejected (double spend
detected) by the ZeroTime[2] lock.

If at any point the session participants count drops due to a cbleave_t all clients
MUST send a cbleave_t. If at any point during the network procedures should a
client-side error occur a cbleave_t MUST be sent. A node may OPTIONALLY start
over if a failed session occurs.

If there is a lack of users participating in the system liquidity could become a
problem. Having a system in place such as a node incentives[3] can solve a
liquidity problem should one arise in a live system. An incentivised node could be
rewarded for providing liquidity to the network for blending operations. With
passive mixing a liquidity problem is less likely to arise.

None

With our proposal we have satisfied the requirements which are essential making
a fungible and untraceable crypto-currency with a high degree of anonymity with
no counter-party risk involved.

Blended Transactions

Handling Failures

Liquidity

Security Considerations

Conclusion

Author



John Connor

Public Key:

047d3cdc290f94d80ae88fe7457f80090622d064757
9e487a9ad97f77d1c3b3a9e8b596796ebeb23a78214
fc0a95b6a093b3f1d5e2205bd32168ac003f50f4f557

Contact:

BM-NC49AxAjcqVcF5jNPu85Rb8MJ2d9JqZt

1. https://en.wikipedia.org/wiki/Fungibility
2. https://raw.githubusercontent.com/john-connor/papers/master/zerotime.pdf
3. https://raw.githubusercontent.com/john-

connor/papers/master/node_incentives.pdf
4. https://en.wikipedia.org/wiki/Elliptic_curve_Diffie–Hellman

Draft Revision 05

References


