
In this document I propose an energy efficient cryptographic internet currency with
a strong network security model, sub-second transaction times and low long-term
inflation.

All currently existing cryptographic currencies derived from and including
Bitcoin[4] have inefficient network implementations that send all packets as plain
text. All currently existing cryptographic currencies derived from and including
Peercoin[5] implement Proof-of-Stake algorithms that are not energy efficient,
utilizing excess CPU cycles while staking. Vanillacoin was built to solve these
problems while bringing a modern day approach to it's design.

The core cryptographic algorithms are similar to that of Bitcoin[4] and Peercoin[5];
therefore the they remain well tested and secure.

The core Bitcoin[4] and Peercoin[5] networking code is an example of poor and
outdated design. The Bitcoin wiki[6] points out only some of the problems:

Blocks are taking over a second, on average, to process once downloaded. Also,
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testing reveals very large queues of blocks being processed per message loop,
which is not what you would expect if the thread was pulling them out of the
queue as they arrive on the sockets.

It is also points out that:

...message queues are processed to completion, one at a time per node. This can
result in big backups of messages from other nodes.

Also, packets are sent as plain text and peers listen on pre-defined port numbers.
At one time Satoshi Nakamoto thought about resolving some of these network
concerns in the Bitcoin[4] protocol.

On december 9th 2009 Satoshi Nakamoto said:

I have thought about eventually SSLing all the connections. I assume anything
short of SSL would be pointless against DPI.

On december 9th 2009 Satoshi Nakamoto said:

...the other stealth stuff would be kinda pointless if it's always the same port
number.

We avoid these problems altogether with a modern approach and make the
network as "real-time" as possible. Some of the following steps were taken:

1. Single Threaded or Multi-Threaded

Because of the asynchronous design a single network thread is able to
operate more efficiently than multiple network threads on the typical
computer, tablet or phone while using a "thread per core" design is better
suited for servers such as exchanges that need to process 1000's of
transactions per second. Therefore we have provided both modes of
operation.

2. Asynchronous

All network calls occur asynchronously by being handed off to the underlying



operating system.

3. Encryption

All TCP network connections are secured using the Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)[1]. All
UDP communications are encrypted using the Stream Cipher HC-256[3].
This prevents data mining, eavesdropping, censorship, traffic shaping and
Deep Packet Inspection(DPI)[7].

4. Random ports

Random ports are used as to not advertise to the world that we are operating
a cryptographic currency node.

5. UDP Layer

Broadcasting messages over UDP enables them to reach more peers
quicker using less bandwidth while O(1) routing allows for maximum
scalability as the network grows.

Example:

 /**
  * The number of slots per block.
  */
 enum { slots_per_block = 8 };

 /**
  * The number of blocks in the system.
  */
 enum { total_blocks = 8 };

 /**
  * The number of peers in a slot.
  */
 enum { peers_per_slot = 64 }:

 /**



This example algorithm broadcasts a message to a random peer selected
from each slot in the system. Each recipient of the message then broadcasts
the message to all peers in it's slot. The operation itself is instantaneous
reaching all network peers in less than one second. Large scale simulations
(100's of millions of nodes) show that the typical operation takes about 300
Milliseconds.

  * The message to broadcast to the entire network.
  */
 transaction msg;

 /**
  * The peers we must broadcast to in order to reach the
  * entire network.
  */
 set<peer> peers;

 /**
  * Send the message to at least one slot per block.
  */
 for (auto & block : blocks)
 {
     for (slot in block.slots())
     {
         /**
          * Take a random peer from this slot.
          */
         peers.insert(
             slot.peers()[rand() % (slot.peers().size() - 1)]
         );
     }
 }

 /**
  * Broadcast the message to all peers on the network.
  */
 broadcast(msg, peers);



1. Algorithm

The chosen algorithm is Whirlpool. The resulting hash consists of splitting
384 bits of whirlpool digest and XORing them together in a way to form 256
bits of output.

Example:

Proof-of-Work Implementation



2. Reward

The miner reward is adjusted in a way that a majority of all coins will be
mined within the first 5 years.

Example:

Money Supply Curve

 uint256 ret;

 uint512 digest = whirlpool(block);

 for (uint32 i = 0; i < (sizeof(digest) / 2); i++)
 {
     ret[i] =
         digest[i] ^ digest[i + ((sizeof(digest) / 2) / 2)]
     ;
 }

 /**
  * Destroy fees to deflate the money supply.
  */
 destroy_fees(fees);

 /** 
  * Generate the reward.
  */
 int64 reward = (1111.0 * (pow((height + 1.0), 2.0))) * 1000000;

 /**
  * Decline the reward every 40000 blocks.
  */
 for (auto i = 40000; i <= height; i += 40000)
 {
     reward -= reward / 6;
 }



1. Design Rational

This is a very efficient way to generate Proof-of-Work while maintaining
strong security. The reward model in combination with Proof-of-Stake
supports long-term low inflation and energy efficiency.

1. Algorithm

Our implementation is extremely energy efficient, using less than 1% of a
single CPU core making it ideal to run in the background or for use on mobile
devices. As a result it gives peers the incentive to stay online longer
therefore making the network more robust and secure.

Proof-of-Stake Implementation



2. Design Rational

This is a very efficient way to generate Proof-of-Stake while promoting the
reduction of network churn.

30.7 million coins.
Variable block time targeting 80-200 seconds.
128 coins per block initially.
Difficulty is retargeted every block.
Whirlpool Proof-of-Work algorithm.
0.7% interest rate by use of energy efficient Proof-of-Stake.
0.0005 coin per kilobyte transaction fee.

It is possible to make cryptographic currencies more performant, energy efficient,
secure and private.
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