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 Abstract

The key issues to be solved by AICHAIN:

The aim of AICHAIN is to provide a public 
blockchain platform for the AI with 
complex applications. The data resources 
provider, application development team 
and runtime platform resources provider 
and users all can deploy the data or 
application on AICHAIN, and setup an 
ecology chain system for AI application 
on blockchain technology with lower cost 
and lower technology threshold.

AICHAIN will build a benign ecosystem, 
encourage more people to participate in 
the development and landing of AI appli-
cations, promote the development of AI 
in a credible and reliable environment, 
and transform the data generated by 
individuals into more precise services for 
individuals.

1. Implement a non-chip mining algorithm based on the blockchain technology 
of bitcoin. . Bitcoin-HASH, LTC-scrypt, DASH-X11 have been implemented inside 
ASIC, ETH  has taken up a lot of graphics resources and high-end graphics cards are 
now also monopolized by big companies. A less expensive graphics card resource 
is expected, but at the same time it will not be easily implemented inside ASIC. Its 
purpose is to make blockchain safer, to ensure that participating users have enough 
computing power and the rights to deploy their own applications.

3.  AICHAIN separates the application running environment from the blockchain 
node. Using docker as the application running platform allows AICHAIN to provide 
an app running environment that is standard, upgradeable, customizable and 
supports multiple programming languages. The AICHAIN node program comes 
with a public standard docker IMG with an application running environment. This 
running environment can be continuously upgraded, and even be freely modified by 
the user. Users can also deploy their own docker IMG with AICHAIN nodes.

2.  Develop AI application deployment functions based on bitcoin blockchain and 
definitions of the application deployment or execution unit based on the data format 
of the transaction.
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4.  The blockchain onlyindicates the description of the AI application, and will not 
include complete application data, which allows the size of application data to be 
very large, and saves storage space. The deployer provides download addresses for 
application executable file and data resources, or an address for direct service. Only 
the description information of those applications or resources is recorded in the AI 
application information unit.

5.  Provide an interface for verification of user’s identity and blockchain transaction 
information. This allows developers make their application more customized, which 
is suitable for more complex application development and running environments.
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2.1 Public Key Cryptography

2.2 Related Algorithms

Asymmetric encryption requires two 
(one pair of) keys: a public key and a 
private key. Only the corresponding 
private key can decrypt data encrypted 
with the public key. And vice versa. (If 
the private key is used for encryption, 
only the corresponding public key can 
be used to decrypt it.) Both parties can 
establish secure communication without 
exchanging keys.

The AICHAIN system uses the same spec-
ifications as Bitcoin, the private key is 
composed of 32 bytes of random numbers. 
The public key can be calculated by the 
private key, and the public key obtains 
the address of AICHAIN’s coin through 
a series of hashing and encoding 
algorithms. So the address is actually 
another form of public key, it can be 
interpreted as a summary of the public 
key.

There are several algorithms used in the 
calculation of private key, public key and 
address, such as a signature algorithm 
based on secp256k1 elliptic curve multi-
plication, SHA-256, RIPEMD-160, and 
Base58 encoding.

2.2.1 Elliptic Curve Signature Algorithm

The use of elliptic curves in cryptography 
was independently proposed by both Neal 
Koblitz and Victor Miller in 1985. Its main 
advantage is that in some cases it uses 
smaller keys than other algorithms (like 
RSA) but provides a comparable or higher 
level of security.

Bitcoin uses a public-key cryptography 
algorithm based on secp256k1 elliptic 
curve mathematics. It contains a private 
key and a public key. The private key is 
used to sign the transaction, and send 
the signature and the original data to 
the entire virtual coin network. The 
public key is used by the nodes in the 
whole network to verify the validity of 
the transaction. The signature algorithm 
ensures that the transaction is issued by 
the person who owns the corresponding 
private key.

2.2.2 Hash Function

SHA-256 is a kind of hash function.

Definition of private key,  
public key and address
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RIPEMD-160 is also a kind of hash 
function used to get addresses, with an 
output of 20 bytes (160 bits). Bitcoin uses 
it to reduce the number of bytes that 
identify the  receiver.

2.2.3 Base58 encoding

It is a kind of readability coding 
algorithm, similar to the replacement 
algorithm in classical cryptography. It’s 
not core cryptography theory. Readability 
coding algorithms are not for data 
security, but for readability. Information 
transmitted in binary is not readable, 
strings composed of numbers and letters 
are more easily identified. Readability 
coding does not change the content of the 
information, it only changes the form of it 
(some coding algorithms also incorporate 
a fault-tolerant parity function to ensure 
the accuracy and completeness of the data 
during transmission).

Base64 is a common readability encoding 
algorithm. The name of this algorithm 
means that 64 characters are used in 
the encoding process: uppercase A to Z, 
lowercase a to z, numbers 0 to 9, “+” and 
“/”.

Base58 is a coding method used in Bitcoin, 
and mainly used to generate Bitcoin wallet 
addresses. Compared to Base64, Base 58 
does not use the number “0”, the capital 
“O”, the capital “I”, or the lowercase “i”, 
nor the “+” and “/” symbols.

The main purpose of Base58 is :

To avoid confusion. In some fonts, the 
number 0 and capital  O, as well as  capital 
I and  lower case l, are very similar.

The reason why “+” and “/” are not used 
is that characters which are neither 
numbers nor letters are difficult to accept 
as part of an account.

No punctuation. It usually does not branch 
from the middle.

To make most of the software use a 
double-click to select the entire string.

AICHAIN’s coin also uses the Base58 
algorithm to encode the hash 160 of the 
public key and private key, generate the 
address starting with A and the private 
key in WIF (Wallet import Format) format.
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2.3 Private Key and Public Key

2.4 Generating the address

The private key is actually a random 
number of 32 bytes (256 bits) generated by 
SHA-256. The range of valid private keys 
depends on the secp256k1 elliptic curve 
digital signature standard used by Bitcoin. 
Almost any number between 0x01 and 
0xFFFF FFFF FFFF FFFF FFFF FFFF FFFF 
FFFE BAAE DCE6 AF48 A03B BFD2 5E8C 
D036 4140 is a valid private key.

To get a common WIF (Wallet import 
Format) private key, you need to add 
a version number in front of the key, 
compression flag and additional checksum 
after the key (the additional checksum is 
the first four bytes given by performing 
SHA-256 hash operation on the key twice) 
and encode the key in Base58 format.

After elliptic curve multiplication 
operation, you can get the public key 

from the private key. The public key is 
a point on the elliptic curve and has x 
and y coordinates. There are two forms 
of public keys: compressed and uncom-
pressed. Bitcoin used to use an uncom-
pressed public key, but most clients today 
use compressed public keys by default.

Due to the mathematical principle, it is 
feasible to derive the public key from the 
private key, but it is impossible to derive 
the private key in reverse from the public 
key.

People who first hear bitcoin usually 
have a misconception that the bitcoin 
public key is just an address, which is 
not correct. Because you need perform 
operations on the public key to get the 
address.

The length of the generated public key 
based on the elliptic curve algorithm is 
always too long: the compressed format 
has 33 bytes and non-compressed has 
65 bytes. The address is for reducing the 
number of bytes that the receiver needs to 
identify and is generated as follows:

Generate the private key and public key.

Perform the SHA256 hash algorithm on 

the public key to derive a 32-byte hash 
value.

Perform the RIPEMD-160 algorithm on the 
derived hash value to get a 20-byte hash 
value, which is called Hash160.

Perform the SHA256 hash algorithm 
twice on the 21-byte array (composed 
of the version number and Hash160) 
to get the first four bytes of the result, 
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which is called the checksum. And enter 
the derived checksum at the end of the 
21-byte array.

Encode the 25-byte array based on Base58 
format to derive the address.

Due to the characteristics of elliptic curve 
multiplication and hash functions, you 
can derive the public key from the private 
key and also derive the address from the 

public key, a process which is irrevers-
ible. Therefore,  the private key is the most 
crucial part in the entire system. Leaking 
the private key means losing everything.

If you want to spend the assets of an 
address, you need to create a transaction 
and use the private key corresponding to 
that address to sign it. But if you want to 
transfer assets to an address, just need to 
transfer the public address.

2.5 Some address forms

2.5.1 P2PKH (Pay to Public Key Hash)

In the present bitcoin network, most transactions are based on P2PKH. The following is a 
P2PKH lock script and unlock script:

<sig> means the signature, and <PubK> means the public key. And specific steps are as 
follows:

Unlock script  

(scriptSig)

Provided by the user 

and used in the unlock 

operation.

When creating a transaction, the above script exists in the 

output of the transaction and is unlocked together with 

the part submitted by the user.

The end is TRUE or FALSE.

<sig><PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

Lock script  

(scriptPubKey)+
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<sig>

<sig>

<sig>

<sig>

PubK

PubK

PubK

PubK

PubKHash

Stack

Stack

Stack

Stack

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

Script

Script

Script

Script

Execute the pointer: put sig data on the top of the stack.

Execute the pointer: put PubK on the top of the stack.

Execute the pointer: copy the data on the top of the stack and put it 

on the top of the stack(DUP).

Execute the pointer: perform HASH160 operation on the data 

which is on the top of the stack.

Formula: RIPEMD160(SHA256(PubK))
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<sig>

TRUE

PubK

PubK

PubKHash

PubKHash

Stack

Stack

Stack

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

Script

Script

Script

Execute the pointer: 

put the PubKHash which is in the script on the top of the stack.

Execute the pointer: compare the top two data in the stack. 

If they are the same, remove all and continue execution; 

if not, terminate and return FALSE.

Execute the pointer: use PubK public key to verify signature data sig. 

If succeed, return TRUE; if not, return FALSE.
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It can be seen that two tests must be 
verified, the first is whether the Public 
Key can be converted to the correct 
address, and the second is whether the 
Signature is valid, that is, whether you 
are the owner of the Public Key, meaning 
you have the corresponding private key 
(Private Key).

The content of the Signature is mainly 
the result of operations between the 
transaction (the Hash of transaction 
information) and the private key , which 
is usually a coordinate R, S. At the time 
of verification, the signature results, the 
transaction summary, and the public key 
are calculated, and the resulting verifica-
tion signature is finally obtained as TRUE 
or FALSE.

2.5.2 P2PK (Pay to Public Key)

The P2PK lock version of the script is as 
follows:

<Public Key A> OP_CHECKSIG  

The script used for unlocking is a simple 
signature: 

<Signature from Private Key A>   

The combination script confirmed by the 
transaction validation software is: 

<Signature from Private Key A> <Public 
Key A> OP_CHECKSIG

It has been found that this rule is much 

simpler than P2PKH, as only one step is 
verified and the address verification is 
less. In fact, the main purpose of creating 
P2PKH is to make the address shorter and 
make it more convenient to use. What’s 
more, the core content of Bitcoin is also 
P2PK.

2.5.3 P2SH (Pay to Script Hash)

The general form of the locking script 
with M-N multisignature is:

M <Public Key 1> <Public Key 2> ... <Public 
Key N> N OP_CHECKMULTISIG  

Among them, N is the total number 
of archived public keys, and M is the 
minimum number of public keys that 
required for activation of the transaction. 

For example, 2-3 multisignature 
conditions:

2 <Public Key A> <Public Key B> <Public 
Key C> 3 OP_CHECKMULTISIG  

The above locked script can be unlocked 
by a script containing a signature and a 
public key:

OP_0 <Signature B> <Signature C>   

OP_0 is a placeholder, and it doesn’t have 
any practical significance.

Two combinations of scripts will form a 
validation script:
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OP_0 <Signature B> <Signature C> 2 
<Public Key A> <Public Key B> <Public Key 
C> 3 OP_CHECKMULTISIG 

P2SH is a simplified version of the MS 
multisignature. If P2SH is used for the 
same 2-3 multiple signature conditions as 
above, the steps are as follows:

To lock a script:

Lock a script:

2 <Public Key A> <Public Key B> <Public 
Key C> 3 OP_CHECKMULTISIG   

For locking scripts, the SHA256 hash 
algorithm is first used, and then the 
RIPEMD160 algorithm is applied to it. 20 
bytes of one script: 

8ac1d7a2fa204a16dc984fa81cfd-
f86a2a4e1731

So the lock of a script is changed to:

OP_HASH160 8ac1d7a2fa204a16dc-
984fa81cfdf86a2a4e1731 OP_EQUAL  

This lock-in script is much shorter than 
the locking script originally used by MS. 
When the receivers want to use the UTXO 
in this transaction, they need to submit 
the unlocking script (here it can also be 
called the redemption script):

<Sig1> <Sig2> <2 PK1 PK2 PK3 PK4 PK5 5 
OP_CHECKMULTISIG>   

Combined with a locking script：

<Sig1> <Sig2> <2 PK1 PK2 PK3 PK4 PK5 
5 OP_CHECKMULTISIG> OP_HASH160 
8ac1d7a2fa204a16dc984fa81cfd-
f86a2a4e1731 OP_EQUAL

Using the operation rules in the 2.5.1 
chapter, it is obvious that the verification 
process is divided into two steps. First, it is 
whether the redemption script attached to 
the receiver is consistent with the sender’s 
locking script. If so, it will run the script 
and verify the multisignature.

A feature of P2SH is that the responsi-
bility of making the script is given to the 
recipient, the advantage of which is to 
relieve  the node’s storage pressure.

The multisignature address is an address 
is generated by 2 or more public keys. 
When using N public keys to generate 
multiple signature addresses, it can be 
agreed that at least M private keys are 
needed to sign the transaction when 
verifying the signatures, which must meet 
the following conditions:

N >= 2

N >= M >= 1 
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 Mining Algorithm

3.1 Lyra2DC (DC – Dynamic Complexity)

A NIST5 based chained algorithm 
“Lyra2DC” (DC – Dynamic Complexity), is 
proposed with customizable parameters 
useful for thwarting future threats to 
the ASIC (Application Specific Integrated 
Circuit). Adapted from the Lyra2RE 
algorithm used by Vertcoin and Monacoin, 
Lyra2DC is specifically designed with 
this purpose in mind and affords lower 
power consumption and cooler GPU 
temperatures. Lyra2 (the principal part 
of the chained algorithm) allows you 
to change memory usage and time cost 
independently, giving you more leverage 
against ASICs.

Lyra2DC is a chained algorithm consisting 
of five different hash functions: Keccak, 
Skein, Groestl, Blake and Lyra2.The 
purpose of AICHAIN is to:

Leveraging industry proven hashing 
algorithms, we were able to create the 
most secure, robust, enduring chained 
algorithm to date that is both easier 
on GPUs and resistant to ASICs. At this 
time we have decided not to implement 
an “N factor” schedule as it is nearly 
impossible to predict the future. However, 
Lyra2DC will give us the flexibility to 
make changes whenever that becomes 
necessary.

Due to the chained nature of the 
algorithm, GPU miners will be inherently 
hard to optimize, meaning that power 
draw and heat can be reduced. This has 
been a desired feature for some time with 
Scrypt-N coins that see dropping hash 
rates due to high energy consumption, 
while Vertcoin ( which used Lyra2RE 
) has consistently had a higher $/Day/
Normalized MH/s all than other coins.

As was previously detailed in the Lyra2 
white paper, Lyra2 is strictly sequential 
in nature, using a “cryptographic sponge” 
at its core. This means that paralleliza-
tion of the algorithm will be practically 
impossible with each step relying on the 
previous computation steps.

Unlike Scrypt-N, time cost and memory 
cost are separate, giving independent 

Blake-256

Skein-256

Lyra2 (nRows=8, nCols=8, TimeCost=1)

Keccak-256

Groestl-256
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3.2 Password Hashing Schemes (PHS)

control over both parameters. ASICs have 
been far easier to develop for Scrypt-N 
than they will be for Lyra2DC because 
increasing the N-factor of Scrypt simply 
involves  more iterations of the algorithm. 
While increasing the time cost under 
Lyra2 only involves more iteration, 
increasing the memory requirement 
means that any potential ASIC device 
would have to physically be designed 
with more memory for each thread. In the 
future, if ASICs were ever developed for 
Lyra2DC, we could simply fork to a higher 
memory requirement and those ASICs 
would no longer properly function.

Many crypto-currencies claim to have 

ASIC-resistant algorithms, but many of 
them are only so because no ASIC has 
been made for them yet. It has been 
rumored that FPGAs for X11 already exist 
and Neoscrypt only uses more rounds of 
cipher functions. By contrast, Lyra2DC 
aims to be ASIC-resistant at heart, 
allowing for less disruption to miners 
in the future due to our ability to simply 
change algorithm parameters rather than 
change the algorithm all together. It will 
also free up  time to focus on developing 
new features without having to worry 
about constantly implementing new 
algorithms every time there is an ASIC 
threat.

As previously discussed, the basic 
requirement for a PHS is to be non-invert-
ible, so that recovering the password from 
its output is computationally unfeasible. 
Moreover, a good PHS output is expected 
to be indistinguishable from random 
bit strings, preventing an attacker from 
discarding part of the password space 
based on perceived patterns. In principle, 
those requirements can be easily accom-
plished simply by using a secure hash 
function, which by itself ensures that the 
best attack route against the derived key 
is through brute force (possibly aided 
by a dictionary or “usual” password 
structures).

What any modern PHS does, then, is to 
include techniques that raise the cost of 
brute-force attacks. A first strategy for 
accomplishing this is to take as input not 
only the user memorizable password 
itself, but also a sequence of random 
bits known as salt. The presence of such 
random variables thwarts several attacks 
based on pre-built tables of common 
passwords, i.e., the attacker is forced to 
create a new table from scratch for every 
different salt. The salt can, thus, be seen 
as an index into a large set of possible 
keys derived from a password, and need 
not to be memorized or kept secret.

A second strategy is to purposely raise 
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the cost of every password guess in terms 
of computational resources, such as 
processing time and/or memory usage. 
This certainly also raises the cost of 
authenticating a legitimate user entering 
the correct password, meaning that 
the algorithm needs to be configured 
so that the burden placed on the target 
platform is minimally noticeable by users. 
Therefore, the legitimate users and their 
platforms are ultimately what impose 
an upper limit on how computationally 
expensive the PHS can be for themselves 
and for attackers. For example, a human 
user running a single PHS instance is 
unlikely to consider it a nuisance that 
the password hashing process takes a 
full second to run and uses a small part 
of the machine’s free memory, e.g., 20 
MB. On the other hand, supposing that 
the password hashing process cannot 
be divided into smaller parallelizable 
tasks, achieving a throughput of 1,000 
passwords tested per second requires 20 
GB of memory and 1,000 processing units 
as powerful as that of the legitimate user.

A third strategy, especially useful when 
the PHS involves both processing time 
and memory usage, is to use a design 
with low parallelizability. The reasoning 
is as follows. For an attacker with access 
to p processing cores, there is usually 
no difference between assigning one 
password guess to each core or paral-
lelizing a single guess so it is processed 
p times faster: in both scenarios, the 
total password guessing throughput is 
the same. However, a sequential design 
that involves configurable memory 

usage imposes an interesting penalty 
to attackers who do not have enough 
memory for running the p guesses in 
parallel. For example, suppose that testing 
a guess involves m bytes of memory and 
the execution of n instructions. Suppose 
also that the attacker’s device has 100m 
bytes of memory and 1000 cores, and that 
each core executes n instructions per 
second. In this scenario, up to 100 guesses 
can be tested per second against a strictly 
sequential algorithm (one per core), the 
other 900 cores remaining idle because 
they have no memory to run.

Aiming to provide a deeper under-
standing on the challenges faced by PHS 
solutions, in what follows we discuss the 
main characteristics of platforms used by 
attackers and then how existing solutions 
avoid those threats.

Attack platforms:

The most dangerous threats faced by any 
PHS come from platforms that benefit 
from “economies of scale”, especially 
when cheap, massively parallel hardware  
is available. The most prominent 
examples of such platforms are Graphics 
Processing Units (GPUs) and custom 
hardware synthesized from FPGAs.

1   Graphics Processing Units (GPUs). 
Following the increasing demand for 
high-definition realtime rendering, 
Graphics Processing Units (GPUs) have 
traditionally carried a large number of 
processing cores, boosting their paral-
lelization capability. Only more recently, 
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however, GPUs evolved from specific 
platforms into devices for universal 
computation and started to give support to 
standardized languages that help harness 
their computational power, such as CUDA 
and OpenCL). As a result, they became 
more intensively employed for more 
general purposes, including password 
cracking.

As modern GPUs include a few thousands 
processing cores in a single piece of 
equipment, the task of executing multiple 
threads in parallel becomes simple and 
cheap. They are, thus, ideal when the 
goal is to test multiple passwords inde-
pendently or to parallelize a PHS’s 
internal instructions. For example, 
NVidia’s Tesla K20X, one of the top GPUs 
available, has a total of 2,688 processing 
cores operating at 732 MHz, as well as 6 
GB of shared DRAM with a bandwidth 
of 250 GB per second. Its computational 
power can also be further expanded 
by using the host machine’s resources, 
although this is also likely to limit the 
memory throughput. Supposing this GPU 
is used to attack a PHS whose param-
etrization makes it run in one second 
and take less than 2.23 MB of memory, 
it is easy to conceive an implementation 
that tests 2,688 passwords per second. 
With a higher memory usage, however, 
this number will drop due tothe GPU’s 
memory limit of 6 GB. For example, if a 
sequential PHS requires 20 MB of DRAM, 
the maximum number of cores that could 
be used simultaneously would be 300, 
only 11% of the total available.

2   Field Programmable Gate Arrays 
(FPGAs). An FPGA is a collection of 
configurable logic blocks wired together 
and with memory elements, forming a 
programmable and high-performance 
integrated circuit. In addition, as such 
devices are configured to perform a 
specific task, they can be highly optimized 
for their purpose (e.g., using pipelining). 
Hence, as long as enough resources (i.e., 
logic gates and memory) are available 
in the underlying hardware, FPGAs 
potentially yield a more cost-effective 
solution than what would be achieved 
with a general-purpose CPU of similar 
cost. When compared to GPUs, FPGAs may 
also be advantageous due to the latter’s 
considerably lower energy consumption, 
which can be further reduced if its circuit 
is synthesized in the form of custom logic 
hardware (ASIC).

A recent example of password cracking 
using FPGAs is presented below. Using 
a RIVYERA S3-5000 cluster with 128 
FPGAs against PBKDF2- SHA-512, the 
authors reported a throughput of 356,352 
passwords per second in an architec-
ture having 5,376 passwords processed 
in parallel. It is interesting to notice that 
one of the reasons that made these results 
possible is the small memory usage of 
the PBKDF2 algorithm, as most of the 
underlying SHA-2 processing is performed 
using the device’s memory cache (much 
faster than DRAM). Against a PHS 
requiring 20 MB to run, for example, the 
resulting throughput would presumably 
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be much lower, especially considering that 
the FPGAs employed can have up to 64 MB 
of DRAM and, thus, up to three passwords 
can be processed in parallel rather than 
5,376.

Interestingly, a PHS that requires 
a similar memory usage would be 
troublesome even for state-of-the-art 

clusters, such as the newer RIVYERA 
V7-2000T. This powerful cluster carries 
up to four Xilinx Virtex-7 FPGAs and up 
to 128 GB of shared DRAM, in addition to 
the 20 GB available in each FPGA. Despite 
being much more powerful, in principle 
it would still be unable to test more than 
2,600 passwords in parallel against a PHS 
that strictly requires 20MB to run.

3.3 Scrypt

Now we will briefly describe the Scrypt 
and Lyra2 algorithm for the sake of 
completeness. Scrypt was a second 
generation POW algorithm, compared 
with the RSA256 used in bitcoin, while 
we believe the Lyra2 is a third generation 
algorithm for improved ASIC resistance.

Arguably, the main password hashing 
solutions available in the literature are: 
PBKDF2, bcrypt and scrypt. Since scrypt 
is only PHS among them that explores 
both memory and processing costs and, 
thus, is directly comparable to Lyra2, its 
main characteristics are described in 
what follows. For the interested reader, 
a discussion on PBKDF2 and bcrypt is 
provided in the appendices.

The design of scrypt focus on coupling 
memory and time costs. For this, scrypt 
employs the concept of “sequential 
memory-hard” functions: an algorithm 
that asymptotically uses almost as much 
memory as it requires operations and 

for which a parallel implementation 
cannot asymptotically obtain a signifi-
cantly lower cost. As a consequence, if the 
number of operations and the amount of 
memory used in the regular operation of 
the algorithm are both (R), the complexity 
of a memory-free attack (i.e., an attack 
for which the memory usage is reduced 
to (1)) becomes Ω(R2), where R is a system 
parameter. 

The following steps compose scrypt’s 
operation (see Algorithm 1). First, it 
initializes p b-long memory blocks, Bi. 
This is done using the PBKDF2 algorithm 
with HMAC-SHA-256 as underlying 
hash function and a single iteration. 
Then, each Bi is processed (incremen-
tally or in parallel) by the sequential 
memory-hard ROMix function. Basically, 
ROMix initializes an array M of R b-long 
elements by iteratively hashing Bi. It 
then visits R positions of M at random, 
updating the internal state variable X 
during this (strictly sequential) process in 
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order to ascertain that those positions are indeed available in memory. The hash function 
employed by ROMix is called BlockMix , which emulates a function having arbitrary 
(b-long) input and output lengths; this is done using

Algorithm 1 Scrypt.
  
Param:  h d BlockMix ’s internal hash function output length
Input: pwd d The password
Input: salt d A random salt
Input:  k d The key length
Input:  b d The  block  size,  satisfying  b = 2r • h
Input:  R d Cost parameter (memory usage and processing time)
Input:  p d Parallelism parameter
Output:  K d The password-derived key
1: (B0...Bp−1)  ←PBKDF2HM AC−SHA−256(pwd, salt, 1, p • b)
2: for i ← 0 to p − 1 do
3: Bi  ←ROMix(Bi, R)
4: end for
5:  K  ←PBKDF2HMAC−SHA−256(pwd, B0 " B1 " ... " Bp−1, 1, k)
6: return K d Outputs the k-long key
7: function ROMix(B, R) d Sequential memory-hard  function
8: X  ← B
9: for i ← 0 to R − 1 do d Initializes memory array M
10:  Vi  ← X   ; X ←BlockMix(X)
11: end  for
12: for i ← 0 to R − 1 do d Reads random positions of M
13:  j ← Integerif y(X) mod R
14:  X ←BlockMix(X (+) Mj )
15: end  for
16: return  X
17: end function
18: function BlockMix(B) d b-long in/output hash function
19: Z ← B2r−1 d r = b/2h, where h = 512 for Salsa20/8
20: for i ← 0 to 2r − 1 do
21:  Z ← Hash(Z (+) Bi)  ;   Yi ← Z
22: end  for
23: return (Y0, Y2, ..., Y2r−2, Y1, Y3, Y2r−1)
24: end function

the Salsa20/8 stream cipher, whose output length is h = 512. After the p ROMix processes 
are over, the Bi blocks are used as salt in one final iteration of the PBKDF2 algorithm, 
outputting key K.
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Scrypt displays a very interesting design, 
being one of the few existing solutions 
that allow the configuration of both 
processing and memory costs. One of 
its main shortcomings is probably the 
fact that it strongly couples memory and 
processing requirements for a legitimate 
user. Specifically, scrypt’s design prevents 
users from raising the algorithm’s 
processing time while maintaining a 
fixed amount of memory usage, unless 
they are willing to raise the p parameter 
and allow further parallelism to be 
exploited by attackers. Another incon-
venience with scrypt is the fact that it 
employs two different underlying hash 
functions, HMAC-SHA-256 (for the PBKDF2 
algorithm) and Salsa20/8 (as the core 
of the BlockMix function), leading to 
increased implementation complexity.  
Finally, even though Salsa20/8’s known 
vulnerabilities are not expected to 
compromise  the security of scrypt, using 
a stronger alternative would be at least 
advisable, especially considering that 
the scheme’s structure does not impose 
serious restrictions on the internal hash 
algorithm used by BlockMix. In this 

case, a sponge function could itself be an 
alternative, with the advantage that, since 
sponges support inputs and outputs of 
any length, the whole BlockMix structure 
could be replaced.

Inspired by scrypt’s design, Lyra2 builds 
on the properties of sponges to provide 
not only a simpler, but also more secure 
solution. Indeed, Lyra2 stays on the 
“strong” side of the memory-hardness 
concept: the processing cost of attacks 
involving less memory than specified 
by the algorithm grows much faster 
than quadratic ally, surpassing the best 
achievable with scrypt and thwarting the 
exploitation of time-memory trade-offs 
(TMTO). This characteristic should 
discourage attackers from trading 
memory usage for processing time, which 
is exactly the goal of a PHS in which 
usage of both resources are configurable. 
In addition, Lyra2 allows for a higher 
memory usage for a similar processing 
time, increasing the cost of regular attack 
venues (i.e., those not exploring TMTO) 
beyond that of scrypt’s.

3.4 Lyra2

As any PHS, Lyra2 takes as input a salt 
and a password, creating a pseudorandom 
output that can then be used as key 
material for cryptographic algorithms or 
as an authentication string. Internally, the 
scheme’s memory is organized as a matrix 

that is expected to remain in memory 
during the whole password hashing 
process: since its cells are iteratively read 
and written, discarding a cell for saving 
memory leads to the need of re-computing 
it whenever it is accessed once again, 
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Algorithm 2 The Lyra2 Algorithm.

Param:  H d Sponge with block size b (in bits) and underlying permutation f 
Param: Hρ d Reduced-round sponge for  use  in  the  Setup  and  Wandering  
phases
Param:  ω d Number of bits to be used in rotations (recommended: a multiple of 
W )   
Input:  pwd d The password
Input:  salt d A salt
Input: T d Time cost, in number of iterations (T “ 1)
Input:  R d Number of rows in the memory matrix
Input:  C d Number of columns in the memory matrix (recommended: C • ρ “ ρmax)
Input:  k d The desired hashing output length, in bits
Output:  K d The password-derived k-long hash
1: d Bootstrapping  phase: Initializes the sponge’s state and local variables
2: d Byte representation of input parameters (others can be added)
3: params ← len(k) “ len(pwd) “ len(salt) “ T “ R “ C
4: H.absorb(pad(pwd “ salt “ params)) d Padding rule: 10*1.
5: gap ← 1   ;   stp ← 1   ;   wnd ← 2   ;   sqrt ← 2 d Initializes visitation 
step and window
6: prev0 ← 2   ;   row1 ← 1   ;   prev1 ← 0
7: d Setup phase: Initializes a (R × C) memory matrix, it’s cells having b bits each
8: for (col ← 0 to C −1) do {M [0][C −1−col] ← Hρ.squeeze(b)} end for
9: for (col ← 0 to C −1) do {M [1][C −1−col] ← M [0][col] (+) Hρ.duplex(M [0][col], b)} 
end for
10: for (col ← 0 to C −1) do {M [2][C −1−col] ← M [1][col] (+) Hρ.duplex(M [1][col], b)} 
end for
11: for (row0 ← 3 to R − 1) do d Filling Loop: initializes remainder rows
12: d Columns  Loop: M [row0] is initialized; M [row1] is  updated
13: for (col ← 0 to C − 1) do
14: rand ← Hρ.duplex(M [row1][col] [+] M [prev0][col] [+] M [prev1][col], b)
15: M [row0][C − 1 − col] ← M [prev0][col] (+) rand
16: M [row1][col] ← M [row1][col] (+) rot(rand)  d rot(): right rotation by  ω  bits
17: end  for
18: prev0 ← row0  ;  prev1 ← row1  ;  row1 ← (row1 + stp) mod wnd
19: if  (row1 = 0) then    d Window fully revisited
20: d Doubles window and adjusts  step
21: wnd ← 2 • wnd  ;   stp ← sqrt + gap  ;   gap ← −gap
22: if (gap = −1) then {sqrt ← 2 • sqrt} end if d Doubles sqrt every other it-
eration
23: end if
24: end for
25: d Wandering phase: Iteratively overwrites pseudorandom cells of the memory ma-
trix
26: d Visitation  Loop: 2R • T  rows revisited in pseudorandom fashion
27: for (wCount ← 0 to R • T − 1) do
28: row0 ← lsw(rand) mod R   ;   row1 ← lsw(rot(rand)) mod R d Picks pseudo-
random rows
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29: for (col ← 0 to C − 1) do d Columns  Loop: updates M [row0,1]
30: d Picks  pseudorandom columns
31: col0 ← lsw(rot2(rand)) mod C   ;   col1 ← lsw(rot3(rand)) mod C
32: rand ← Hρ.duplex(M [row0][col] [+] M [row1][col] [+] M [prev0][col0] [+] M [prev1]
[col1], b)
33: M [row0][col] ← M [row0][col] (+) rand   d Updates ftrst pseudorandom row
34: M [row1][col] ← M [row1][col] (+) rot(rand)   d Updates second pseudorandom 
row
35: end for     d End of Columns  Loop
36: prev0 ← row0   ;    prev1 ← row1 d Next iteration revisits most recently up-
dated rows
37: end for d End of Visitation Loop
38: d  Wrap-up  phase:  output computation
39: H.absorb(M [row0][0]) d Absorbs a ftnal column with full-round sponge
40: K ← H.squeeze(k)  d Squeezes k bits with full-round sponge
41: return K   d  Provides k-long bitstring as output 

until the point it was last modified. The construction and visitation of the matrix is done 
using a stateful combination of the absorbing, squeezing and duplexing operations of the 
underlying sponge (i.e., its internal state is never reset to zero), ensuring the sequential 
nature of the whole process. Also, the number of times the matrix’s cells are revisited 
after initialization is defined. 

By the user, allowing Lyra2’s execution time to be fine-tuned according to the target 
platform’s resources.
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Application information in the UTXO 
trading model

4.1 Application Deployment Principles

4.2 The expansion of transaction data

Based on the UTXO trading model, the 
AICHAIN can expand a space after the 
transaction’s output VOUT data. The space 
is used to store AI application description 
on the blockchain. That can allow a 
transaction to deploy one application to 
the blockchain with different version of 
transaction.

The information of the application unit 
needs to be included:

1  The type of application : provide 
services directly or provide executable 
files.

2  The address to access: provide the 
address of the service or the access 
address of the executable resource 

directly  

3  the description of application: 
name,version,cost and other information.

4  Owner’s public key: The unique 
address used to generate the application.

Only part of application’s information will 
be stored on blockchain, in order to save 
the storage resource of blockchain.

The transaction ID is used as the position 
ID for an application unit.

Acquiring eligibility or rights to use one 
application by transferring AICHAIN’s 
token (AIT) to the address of this 
application unit.

The transaction data based on UTXO 
model is mainly composed of two parts: 
input and output.

Input: consists of one or more unspent 
transactions (unspent_tx_id, vout_n) and 
signature data.

Output: consists of one or more transfer 

destination addresses (script_pubkey), 
and the value of the AIT output to each 
address.

The transactional data in the AICHAIN 
has been expanded to add the area of APP 
units after VOUT outputs data, which can 
be used to deploy one APP unit.
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4.3 Application Deployment Unit : ADU

The application deployment unit contract name: ADU.

4.3.1 Customizable data content

AICHAIN allows third party applications to get data space on a block chain by publishing 
ADU applications, which are used to store [key and value] data. Third party applica-
tions can customize these data field names and content meanings to meet the needs of 
application system.

The fifth bit of the nibble of nVersion is 
used as a flag to deploy the application 
unit. When this bit is set to 1, it indicates 
that the transaction contains at least one 
APP application deployment unit.

The condition is: (nVersion & 
0x08000000)> 0 holds, indicating that the 
transaction contains the APP application 
deployment unit.

The sixth bit of the most significant byte 
of nVersion is used as the flag of the 
application execution unit. When this 
bit is 1, it indicates that the transaction 
contains at least one app execution unit.

The conditions are: (nVersion & 
0x04000000)> 0 holds, indicating that the 
transaction contains the app execution 
unit.

nVersion Vin(one or more unspent tx)

Application Deployment Unit or Application Execution Unit

Vout(N output) nLockTime

The expansion of insert
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·  ADU_PUBKEY: The public key is generated by the application publisher using one’s own 
private key. The first byte describes the length of the public key data followed by the 
public key data.

For example: public key hexadecimal data:
03cc149f66520680d85e18a01a8261a2746ee45fb5fb07ad13e9c316e1c955553d

The value of the first byte indicates the length of the entire public key data: 
chHeader=pubkey _ bin[0];
if (chHeader == 2 || chHeader == 3)
    return 33; // total length = 33 bytes
if (chHeader == 4 || chHeader == 6 || chHeader == 7)
return 65; // total length = 65 bytes

Field name Type definition Description

ADU _ PUBKEY std::vector<unsigned char> pubkey
public key of private key 
by ADU deployer

ADU _ TYPE uint32

ADU type:
0:reserved
1:data store
Others: reserved

ADU _ KEY _ NAME[0]
std::vector<char> keyname
keyname[0] is the length

Name of key

ADU _ KEY _ VALUE[0]
std::vector<unsigned char> key-
value
keyvalue[0] is the length

Value of key

… …

ADU _ KEY _ NAME[n]
std::vector<char> keyname
keyname[0] is the length

Name of key

ADU _ KEY _ VALUE[n]
std::vector<unsigned char> key-
value
keyvalue[0] is the length

Value of key
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·  ADU_TYPE: the type of application deployment unit. Currently this value is defined as 1. 
All other values are reserved.

·  On the block chain, the above data is stored in the database by the following information 
fields:

[key:value]  corresponds to a PUBKEY; each PUBKEY has different  [key:value] data.

All data contents corresponding to respective custom ADU’s are identified by ADU_ADDR.

4.3.2 Application case: standard application unit information

For intelligent application resources, the following [key:value] fields can be defined in the 
ADU of the standard application unit information in accordance with the rules of the 4.3.1 
section:

Keyname KeyValue Description

AIUNIT _ TYPE uint32 in section 5.4

AIUNIT _ DATA _ HASH uint32
The HASH value of the ap-
plication and data resource 
data

AIUNIT _ FEE int64
Fee for usage of resource.
unit is 0.00000001 AIT

AIUNIT _ NAME
std::vector<char> name
name[0] is the length

AI application unit name

AIUNIT _ INFO _ URL
std::vector<unsigned char> info
info[0] is the length

A URL to get info in de-
tails.

ADU_ADDR ADU_PUBKEY keyname keyvalue

ADU _ ADDR _ user ADU _ PUBKEY _ user ADU _ KEY _ NAME[0] ADU _ KEY _ VALUE[0]

… …

ADU _ ADDR _ user ADU _ PUBKEY _ user ADU _ KEY _ NAME[n] ADU _ KEY _ VALUE[n]
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·  AIUNIT_TYPE: The standard application type is used to indicate that the standard 
application unit can be an executable file, data resources, runtime platform or direct 
services(micro-SOA). It is currently defined as 4 kinds of AI units.

·  AIUNIT_HASH: The HASH value of the AI unit data is used to check the data of the 
application and prevent tampering. When the application data changes, you need to issue 
an AEU to update this key’s value to the data area corresponding to the ADU unit.

·  AIUNIT_FEE:  The tariff is how many AI coins you need to pay when using this ADU, the 
unit is: 0.00000001 AIT (minimum unit).

·  application’s name, the introduction of function, the location URL to obtain application 
resources and instructions for use, etc. This URL is specified as JSON body returned for 
HTTP GET request with agreed format. Defined as follows:

{

   “version”:”1.0.1”,
   “name”:”Dog or Cat?”,
   “resource”:”https://myapplication.com/DogCat.zip”,
   “description”:”This is an application to identify a dog or cat from an image”,
   “runtime”:[
      {
         “vm _ type”:”docker”,
         “version”:”0.01”
      }
   ]
}

Where resource is the address of the application resource.
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Field name Type definition Description

AEU _ SIGNATURE
std::vector<unsigned char> signa-
ture
signature[0] is the length

Signature of AEU data content

ADU _ txid uint256
Txid of ADU deploying on 
blockchain.

usrPubKey std::vector<unsigned char> pubkey
The public key of user’s pri-
vate key when sending AEU

OP _ CODE=1 uint8
0: reserved
1: read

ADU _ PUBKEY _ user
std::vector<unsigned char> pubkey
pubkey[0] is the length

To read values of the keyname 
belonging to this pubkey
Can be null, then will read 
all keyname’s value of all 
pubkeys.

ADU _ KEY _ NAME
std::vector<char> keyname
keyname[0] is the length

Name of key
Can be null, then will read 
all keyname’s value of the 
pubkey

4.4 Application execution unit : AEU

The agreed name of the application execution unit is AEU.

4.4.1 Custom data modification execution unit information

The user is allowed to change the content of the corresponding custom data area by 
sending a transaction to a specified ADU address.

The read operation does not need to send a transaction, and can read directly.

Writing and deleting operations are required to send transactions before they can be 
executed.

·  Reading operations, there is no real transaction, and users get data directly from the 
local node interface.
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This request corresponds to the read:

ADU_ADDR:usrPubKey:ADU_KEY_NAME:keyvalue

AEU_SIGNATURE: It is the result of the signature of the above AEU’s data area after the 
AEU_SIGNATURE field. Use usrPubKey for signature verification.

·  The delete operation generates real transactions and modifies the database content of 
the block chain, It is only allowed to operate on the data in the executor’s own public key 
range:

·  Write operations need to send a transaction and will modifiy the database content of the 
block chain, allowing only the operation of the data under the executor’s own public key:

Field name Type definition Description

AEU _ SIGNATURE
std::vector<unsigned char> signa-
ture
signature[0] is the length

Signature of AEU data content

ADU _ txid uint256
Txid of ADU deploying on 
blockchain.

usrPubKey std::vector<unsigned char> pubkey
The public key of user’s pri-
vate key when sending AEU

OP _ CODE=2 uint8 2: delete

ADU _ KEY _ NAME[0]
std::vector<char> keyname
keyname[0] is the length

Name of key

… …

ADU _ KEY _ NAME[n]
std::vector<char> keyname
keyname[0]  is the length

Name of key
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Field name Type definition Description

AEU _ SIGNATURE
std::vector<unsigned char> signa-
ture
signature[0] is the length

Signature of AEU data content

ADU _ txid uint256
Txid of ADU deploying on 
blockchain.

usrPubKey std::vector<unsigned char> pubkey
The public key of user’s pri-
vate key when sending AEU

OP _ CODE=3 uint8 3: write

ADU _ KEY _ NAME[0]
std::vector<char> keyname
keyname[0] is the length

Name of key

ADU _ KEY _ VALUE[0]
std::vector<unsigned char> key _
value
key _ value[0] is the length

Value of key

… …

ADU _ KEY _ NAME[n]
std::vector<char> keyname
keyname[0] is the length

Name of key

ADU _ KEY _ VALUE[n]
std::vector<unsigned char> key _
value
key _ value[0] is the length

4.4.2 Application case: standard application executive unit information

When a user wants to use standard smart applications, they need send a transaction with 
AEU, which does not necessarily change ADU’s custom data area. The [keyname:keyvalue] 
corresponding to the write operation AEU unit is empty. There may be third party appli-
cations that require users to submit data when they need to be launched, which can be 
submitted through [keyname:keyvalue] in the AEU.

In addition, the usrPubKey in AEU will be used to distinguish user identity. When 
invoking the service provided by the application provider, the public key is required to 
verify the identity. Meanwhile, the public key and private key(usrPrivKey) can be used to 
encrypt data communication with the application provider.
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Application deployment and 
implementation

5.1 ADU location identifier

5.2 P2SH address of ADU unit

When we use an app, we first need to locate the application unit in the blockchain. Based 
on UTXO model, when the application unit is deployed in the transaction data, the only 
one identifier is the transaction ID when deploying the application:

When a user wants to obtain the corresponding application, he can use ADU_txid to find 
the corresponding transaction data in the blockchain, and then extract the ADU unit 
information from the corresponding transaction data.

When you need to use an application, you need to transfer the AIT to the address of the 
application. In order to make full use of blockchain transactions to record the usage 
history of application units, it is necessary to ensure the uniqueness of the corresponding 
address of the application. All transactions with this application address can be audited 
separately.

When deploying application, we need create a transaction with a specific nVersion as 
below, then we can put the ADU information unit into the transaction data.

Field name Type definition Implication

ADU _ txid uint256 Transaction ID for deploying the application

Transaction [nVersion VIN VOUT ADU]

nVersion

(nVersion & 0x08000000) > 0
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5.3 Operating environment of the application

When creating the transaction, the ADU unit information contains a public key field: 
ADU_PUBKEY, which is provided by the deployer. The deployer holds the corresponding 
private key: ADU_PRIKEY.

After creating the original transaction, we can know the transaction ID:

This transaction ID is the HASH of the transaction itself, this value participates in the 
generation operation of ADU address as a private key:

Tx transaction ID, 256 bits of data as private key: PrivKey_TX

The public key generated with this private key: PubKey_TX

Use this public key and ADU_PUBKEY to generate a P2SH-type address with a M/N (both 
M and N are 2) multiple signature: ADU_ADDR. This address corresponds to the address of 
the ADU application unit.

People who have the private key, ADU_PRIVKEY, can control the AIT assets on the ADU_
ADDR. When making the transfer, they only need to use ADU_PRIVKEY and PrivKey_TX to 
perform multiple signature on the transfer transaction.

This definition can guarantee the uniqueness of each application address, and is bound to 
the location information of blockchain.

The AICHAIN node is equipped with a docker operating environment and standard docker 
IMG as the basic operating platform. Operating environments of various programming 
languages are pre-built into the IMG, and the supporting programming languages and 
versions are released as a unified specification for the public, including the application 
automatically downloaded after docker IMG launches, and the entrance and rules of 

Field name Type definition Implication

tx _ hash uint256 Transaction ID created when deploying the application
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5.4 Types of applications

implementation. Therefore, developers can develop and debug their own application 
in the docker environment, and the docker operating environment can be updated and 
continuously improved with the upgrade of the AICHAIN node.

At the same time, in order to the convenience of later extension and reserve more free 
customized space for application publishers, the application types of ADU include an 
entrance for providing the service directly, without a supportig operating environment.

5.4.1 Provide executable files

Specify the application type definition: ADU_TYPE=1

An executable package that is applicable to the docker IMG environment, which 
is typically in the application developer’s perspective include 2 parts: application 
deployment + application execution.

The agreed rule is:

The executable package encapsulation format is zip

The agreed application type is: webapp, of which terminal using the browser to show the 
application.

Provide ADU_start.sh as a unified running entry in the zip wrapper inner root directory

In this way, the application developer can customize the ADU_start.sh script in the 
executable package for the deployment and startup of the application, based on the docker 
IMG environment of the AICHAIN node. There is plenty of flexibility and customization.

5.4.2 Provide direct access to services

Specify this application type definition: ADU_TYPE = 2

The direct service entry is: the web app mode, which is displayed in the browser

The application does not need to download the executable file data, and the URL address 
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5.5 Using the ADU application

for resources in ADU’s detailed information gives direct access to the service.

5.4.3 Provides running platform resources

Specify this application type definition: ADU_TYPE = 3

Allows the service providers that have personalized and customized application running 
environment resources to publish their own application running platform resources to 
the blockchain.

When an agreed user makes a transaction using this resource, the provider needs 
to assign the user an application running platform that allows the user to enter the 
“resource” address of the application resource they want to run into the running platform.

5.4.4 Data resources

Resource conventions for data classes ADU_TYPE = 4

Allow vendors with tagged data resources to publish data resource descriptions to the 
blockchain for those who need to use data for deep learning.

When an agreed user makes a transaction using this resource, the provider needs to 
provide the user with a data resource download address (resource address) that allows 
users to download data resources. The provider can also verify the user identity of the 
data resource for this download class.

5.4.5 Extend other types of resources

The current maximum value of ADU_TYPE is not more than 0x0000ffff, and the first two 
bytes are reserved for later use.

We agree that other resource types expand after this, starting from ADU_TYPE = 5 to 
0x0000ffff.

5.5.1 Transaction data containing AEU units

When you need to use an ADU application, you need to transfer an agreed amount of AIT 
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to the ADU_ADDR address, containing information about the AEU unit in this transaction. 
Use the following ADU_tx_id information to specify the ADU application to use.

This is a standard transfer transaction data, in order to identify the transaction 
containing the AEU unit, We agree that the sixth bit of the highest byte of “nVersion” is the 
symbol, when the bit to 1, it indicates  the transaction contains an AEU unit.

For the above special deals using APP applications, the nodes of the AICHAIN are 
received. First, using ADU_tx_id to extract the transaction data from the APP application 
deployment, verify that the address output to the APP in the transfer transaction is 
correct (according to the rules of chapter 5.2).Then the APP application unit information 
is extracted to verify whether the amount of AIT exported to the APP application address 
meets the agreed cost in the ADU application unit in the transfer transaction.

Through the above verification check, the nodes of the AICHAIN will perform two actions: 
transferring the transfer transaction to the network and running the APP application.(It’s 
ok for users to run the APP later).

5.5.2 Transaction data verification

When you want to use an ADU application, you need to create a transaction that transfers 
a specific amount of AIT to the ADU_ADDR address, including the AEC Execution Unit.

There are some check points for this transaction data:

1   Transaction version number check

The conditions are: (nVersion & 0x04000000)> 0 must be true.

Transaction [nVersion VIN VOUT AEU]

nVersion

Check Point 1: (nVersion & 0x04000000)>0
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VOUT : scriptPubKey AEU: ADU_txid

With ADU_txid as the 

private key, refer to Section 

5.2 Calculation: PubKey_TX

ADU information in the 

transaction that extracts 

ADU_txid in the blockchain: 

ADU_PUBKEY

Check Point 2: ScriptPubKey and ADU_ADDR must be consistent.

Refer to Section 5.2 to generate the ADU_ADDR address using the 

two public

2   The output address of the transaction is same as the address of the ADU specified in 
the AEC execution unit:

By the use of ADU_txid in AEC execution unit, we can extract ADU data from the block 
chain. We can refer to section 5.2 ADU_ADDR Address, compared with the output address 
of the VOUT, which must be same.

When the transaction has multiple VOUT cells, it needs to check the output address of each 
VOUT. If one output address matches the address of ADU_ADDR, this means it is right for 
ADU, and the amount of AIT for transfer to this VOUT is recorded.

3   3. The amount of AI coins that the ADU address received in this transaction is 
sufficient:  

On the basis of the second step, check the amount of AI coins received at the ADU_ADDR 
address in the VOUT, which must be greater than or equal to the ADU_FEE value in the 
ADU unit information.
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Transaction: [   nVersion     VIN       VOUT        AEU    ]

VOUT : nValue AEU extraction:  ADU_txid

Extracting the ADU_n ADU 

information in the transaction of 

the ADU_txid in the blockchain: 

ADU_FEE

Check Point 3: VOUT : nValue >= ADU_FEE

On the basis of the transaction signature verification, the above three check points must 
be satisfied at the same time to be deemed a legal transaction. Otherwise, the AICHAIN 
node will reject the transaction and ensure the consistency of the AEC execution 
information and the transaction’s VOUT information.

5.5.3 The application provider verifies the identity of the user

When you need to use the application, we can provide the application service a means to 
verify the user identity information. Use the ADU_PUBKEY in the ADU unit and the user’s 
own private key: USER_PRIVKEY, and use the ECC asymmetric encryption algorithm to 
decrypt the random password issued by the application service provider. After entering 
the correct random password, you can begin to use the application service.

Convention: When a user want to use an application, he must pass his own public key 
while accessing the webapp portal as a parameter.

Convention: The public key provided by the user must be the public key corresponding to 
the signature private key used when creating the transaction of sending AIT to the ADU_
ADDR. Such application providers have the ability to verify AIT payment information.
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5.6 Running process

For example:

https://myapplication.com/index.html?usrPubKey=03cc149f-
66520680d85e18a01a8261a2746ee45fb5fb07ad13e9c316e1c955553d

Parameter name Type meaning

usrPubKey Hexadecimal string
the public key data corresponding to the 
user's private key

The application server uses the above information to generate a random access password 
that is passed to the user after encryption, invoked by the interface to decrypt, and 
or after decrypting by use of an offline decryption tool, submit to enter the normal 
application for use.

Application Encryption: Use USER_PUBKEY and ADU_PRIVKEY

Consumer Decryption: Use ADU_PUBKEY and USER_PRIVKEY

Application providers can customize their own authentication system as they wish.

The AICHAIN has four roles: data provider, application provider, running platform 
resource provider, resource consumers. The first three are different types of resources. 
Resource consumers are users who use these ADU resources. Consumers can be ordinary 
individuals or companies that are developing AI applications(A lot of data is needed for 
machine learning)

Definitions of the following 4 companies (or individuals):

A: A company specializing in image tagging, which expects to make money from the data 
needed by AI developing.

B: A company that specializes in developing AI applications, which expects to rely on the 
developed AI applications to make money.
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Obtain data from 

the resource server 

provided by A.

(Not in the block 

chain)

C: A company that holds a lot of servers with graphics cards and a running environment 
of tensorflow and caffe platform. It expects to rely on these resources  to make money.

D: A normal user with a bunch of pictures of cats and dogs in his hand and hopes to find a 
tool to help him with classified storage.

5.6.1 Developers use data resources

Developers need data to complete machine learning and develop AI applications.

A: data provider

B: resource consumer

A: Package data, post it to the blockchain

B: Send the AIT to the corresponding address of ADU deployed by A

Create a transaction tx: contains the ADU to describe this data

Create a transaction tx: contains the AEU to use this data

give transaction fee to the miners

give transaction fee to the miners

AICHAIN
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Obtain data from 

the resource server 

provided by B.

(Not in the block 

chain)

B: Publish the application of recognizing cats and dogs to the blockchain

D: Send the AIT to the address of the ADU unit deployed by B

Create a transaction tx: contains the ADU describing this application

Create a transaction tx: contains the AEU describing this application

give transaction fee to the miners

give transaction fee to the miners

AICHAIN

A: have the picture of dogs and cats, and the identity of each image. (the mark is about 
whether it’s dog or cat in the picture)

B: the developer of an AI application designed to identify cats and dogs from pictures, B is 
a company.

5.6.2 Applications for users.

This application is for users to use the AI application for recognizing cats and dogs on 
their own computers.

B: the application provider.

D: the user.
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B: Deploy the information of the completed application for recognizing cats and dogs to the 
block-chain, and provide AI application executable file data for download.

D: Because the user has a computer with a graphics card, it can support the AI application 
for recognizing cats and dogs.

5.6.3 users use the resources and applications of running platforms

AI application of cat and dog image recognition on the running platform of the third 
party.

B: is an application provider

C: is the resource provider of the running platform

D: users

B: Publishing the applications of cat 

and dog identifications

C: Publishing running platform 

resources

D: send AIT to the address of 

the ADU deployed by C
D: Use AI applications

D: send AIT to the address of 

the ADU deployed by B

Create a transaction tx: contains the ADU 

unit to describe this resource

Create a transaction tx: 

contains the AEU unit

Create a transaction tx: 

contains the AEU unit

Create a transaction tx: contains the ADU 

unit to describe this resource

Obtain data from the 

resource server provided by B          

(Not in the block chain)

give transaction fee to the miners

give transaction fee to the miners

AICHAIN

Upload cat and dog 

pictures, use application 

of this cat and dog 

identification.

(not on the block chain)
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B: Deploy the cat and dog identification ( AI application information )to the block chain 
and provide the downloading of data in the AI application executable file .

D: he user does not have the right computer to run AI applications for cat dog identifica-
tion. You need to borrow the platform provided by C. You need to transfer to the address of 
the running resource ADU provided by C.

C: allocate resources on a running platform of AI applications for a video card server to D.

D: Transfer AIT to the address of the ADU unit of the cat dog identification application.

D: D initiates and runs the AI application for cat/dog identification provided by B on the AI 
application running platform assigned by C. Then you can upload pictures to be identified.
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