

2

AIC
HAIN

Contents

1. ABSTRACT ... 1

2. DEFINITION OF PRIVATE KEY, PUBLIC KEY AND ADDRESS 3

2.1 PUBLIC KEY CRYPTOGRAPHY ... 3

2.2 RELATED ALGORITHMS ... 3

2.2.1 Elliptic Curve Signature Algorithm ... 3

2.2.2 Hash Function ... 3

2.2.3 Base58 encoding .. 4

2.3 PRIVATE KEY AND PUBLIC KEY ... 5

2.4 GENERATING THE ADDRESS ... 5

2.5 SOME ADDRESS FORMS .. 6

2.5.1 P2PKH (Pay to Public Key Hash) .. 6

2.5.2 P2PK (Pay to Public Key) ... 9

2.5.3 P2SH (Pay to Script Hash) ... 9

3. MINING ALGORITHM ... 11

3.1 LYRA2DC (DC – DYNAMIC COMPLEXITY) …………………………………………………………………………………11

3.2 PASSWORD HASHING SCHEMES (PHS) ……………………………………………………………………………………12

3.3 SCRYPT .. 15

3.4 LYRA2 .. 17

4. APPLICATION INFORMATION IN THE UTXO TRADING MODEL 20

4.1 APPLICATION DEPLOYMENT PRINCIPLES ……………………………………………………………………………… 20

4.2 THE EXPANSION OF TRANSACTION DATA ……………………………………………………………………………… 20

4.3 APPLICATION DEPLOYMENT UNIT : ADU…………………………………………………………………………………21

4.3.1 Customizable data content ... 21

4.3.2 Application case: standard application unit information …………………………………………………… 23

4.4 APPLICATION EXECUTION UNIT : AEU …………………………………………………………………………………… 25

4.4.1 Custom data modification execution unit information ……………………………………………………… 25

4.4.2 Application case: standard application executive unit information …………………………………… 27

5. APPLICATION DEPLOYMENT AND IMPLEMENTATION 28

5.1 ADU LOCATION IDENTIFIER ... 28

5.2 P2SH ADDRESS OF ADU UNIT .. 28

5.3 OPERATING ENVIRONMENT OF THE APPLICATION………………………………………………………………… 29

5.4 TYPES OF APPLICATIONS .. 30

5.4.1 Provide executable files .. 30

5.4.2 Provide direct access to services .. 30

3

AIC
HAIN

5.4.3 Provides running platform resources ………………………………………………………………………………… 31

5.4.4 Data resources ... 31

5.4.5 Extend other types of resources .. 31

5.5 USING THE ADU APPLICATION .. 31

5.5.1 Transaction data containing AEU units ……………………………………………………………………………… 31

5.5.2 Transaction data verification .. 32

5.5.3 The application provider verifies the identity of the user ……………………………………………………34

5.6 RUNNING PROCESS .. 35

5.6.1 Developers use data resources .. 36

5.6.2 Applications for users. ... 37

5.6.3 users use the resources and applications of running platforms ………………………………………… 38

REFERENCE .. 40

AICHAIN
Yellowpaper

1

AIC
HAIN

 Abstract

The key issues to be solved by AICHAIN:

The aim of AICHAIN is to provide a public
blockchain platform for the AI with
complex applications. The data resources
provider, application development team
and runtime platform resources provider
and users all can deploy the data or
application on AICHAIN, and setup an
ecology chain system for AI application
on blockchain technology with lower cost
and lower technology threshold.

AICHAIN will build a benign ecosystem,
encourage more people to participate in
the development and landing of AI appli-
cations, promote the development of AI
in a credible and reliable environment,
and transform the data generated by
individuals into more precise services for
individuals.

1. Implement a non-chip mining algorithm based on the blockchain technology
of bitcoin. . Bitcoin-HASH, LTC-scrypt, DASH-X11 have been implemented inside
ASIC, ETH has taken up a lot of graphics resources and high-end graphics cards are
now also monopolized by big companies. A less expensive graphics card resource
is expected, but at the same time it will not be easily implemented inside ASIC. Its
purpose is to make blockchain safer, to ensure that participating users have enough
computing power and the rights to deploy their own applications.

3. AICHAIN separates the application running environment from the blockchain
node. Using docker as the application running platform allows AICHAIN to provide
an app running environment that is standard, upgradeable, customizable and
supports multiple programming languages. The AICHAIN node program comes
with a public standard docker IMG with an application running environment. This
running environment can be continuously upgraded, and even be freely modified by
the user. Users can also deploy their own docker IMG with AICHAIN nodes.

2. Develop AI application deployment functions based on bitcoin blockchain and
definitions of the application deployment or execution unit based on the data format
of the transaction.

AICHAIN
Yellowpaper

2

AIC
HAIN

4. The blockchain onlyindicates the description of the AI application, and will not
include complete application data, which allows the size of application data to be
very large, and saves storage space. The deployer provides download addresses for
application executable file and data resources, or an address for direct service. Only
the description information of those applications or resources is recorded in the AI
application information unit.

5. Provide an interface for verification of user’s identity and blockchain transaction
information. This allows developers make their application more customized, which
is suitable for more complex application development and running environments.

AICHAIN
Yellowpaper

3

AIC
HAIN

2.1 Public Key Cryptography

2.2 Related Algorithms

Asymmetric encryption requires two
(one pair of) keys: a public key and a
private key. Only the corresponding
private key can decrypt data encrypted
with the public key. And vice versa. (If
the private key is used for encryption,
only the corresponding public key can
be used to decrypt it.) Both parties can
establish secure communication without
exchanging keys.

The AICHAIN system uses the same spec-
ifications as Bitcoin, the private key is
composed of 32 bytes of random numbers.
The public key can be calculated by the
private key, and the public key obtains
the address of AICHAIN’s coin through
a series of hashing and encoding
algorithms. So the address is actually
another form of public key, it can be
interpreted as a summary of the public
key.

There are several algorithms used in the
calculation of private key, public key and
address, such as a signature algorithm
based on secp256k1 elliptic curve multi-
plication, SHA-256, RIPEMD-160, and
Base58 encoding.

2.2.1 Elliptic Curve Signature Algorithm

The use of elliptic curves in cryptography
was independently proposed by both Neal
Koblitz and Victor Miller in 1985. Its main
advantage is that in some cases it uses
smaller keys than other algorithms (like
RSA) but provides a comparable or higher
level of security.

Bitcoin uses a public-key cryptography
algorithm based on secp256k1 elliptic
curve mathematics. It contains a private
key and a public key. The private key is
used to sign the transaction, and send
the signature and the original data to
the entire virtual coin network. The
public key is used by the nodes in the
whole network to verify the validity of
the transaction. The signature algorithm
ensures that the transaction is issued by
the person who owns the corresponding
private key.

2.2.2 Hash Function

SHA-256 is a kind of hash function.

Definition of private key,
public key and address

AICHAIN
Yellowpaper

4

AIC
HAIN

RIPEMD-160 is also a kind of hash
function used to get addresses, with an
output of 20 bytes (160 bits). Bitcoin uses
it to reduce the number of bytes that
identify the receiver.

2.2.3 Base58 encoding

It is a kind of readability coding
algorithm, similar to the replacement
algorithm in classical cryptography. It’s
not core cryptography theory. Readability
coding algorithms are not for data
security, but for readability. Information
transmitted in binary is not readable,
strings composed of numbers and letters
are more easily identified. Readability
coding does not change the content of the
information, it only changes the form of it
(some coding algorithms also incorporate
a fault-tolerant parity function to ensure
the accuracy and completeness of the data
during transmission).

Base64 is a common readability encoding
algorithm. The name of this algorithm
means that 64 characters are used in
the encoding process: uppercase A to Z,
lowercase a to z, numbers 0 to 9, “+” and
“/”.

Base58 is a coding method used in Bitcoin,
and mainly used to generate Bitcoin wallet
addresses. Compared to Base64, Base 58
does not use the number “0”, the capital
“O”, the capital “I”, or the lowercase “i”,
nor the “+” and “/” symbols.

The main purpose of Base58 is :

To avoid confusion. In some fonts, the
number 0 and capital O, as well as capital
I and lower case l, are very similar.

The reason why “+” and “/” are not used
is that characters which are neither
numbers nor letters are difficult to accept
as part of an account.

No punctuation. It usually does not branch
from the middle.

To make most of the software use a
double-click to select the entire string.

AICHAIN’s coin also uses the Base58
algorithm to encode the hash 160 of the
public key and private key, generate the
address starting with A and the private
key in WIF (Wallet import Format) format.

AICHAIN
Yellowpaper

5

AIC
HAIN

2.3 Private Key and Public Key

2.4 Generating the address

The private key is actually a random
number of 32 bytes (256 bits) generated by
SHA-256. The range of valid private keys
depends on the secp256k1 elliptic curve
digital signature standard used by Bitcoin.
Almost any number between 0x01 and
0xFFFF FFFF FFFF FFFF FFFF FFFF FFFF
FFFE BAAE DCE6 AF48 A03B BFD2 5E8C
D036 4140 is a valid private key.

To get a common WIF (Wallet import
Format) private key, you need to add
a version number in front of the key,
compression flag and additional checksum
after the key (the additional checksum is
the first four bytes given by performing
SHA-256 hash operation on the key twice)
and encode the key in Base58 format.

After elliptic curve multiplication
operation, you can get the public key

from the private key. The public key is
a point on the elliptic curve and has x
and y coordinates. There are two forms
of public keys: compressed and uncom-
pressed. Bitcoin used to use an uncom-
pressed public key, but most clients today
use compressed public keys by default.

Due to the mathematical principle, it is
feasible to derive the public key from the
private key, but it is impossible to derive
the private key in reverse from the public
key.

People who first hear bitcoin usually
have a misconception that the bitcoin
public key is just an address, which is
not correct. Because you need perform
operations on the public key to get the
address.

The length of the generated public key
based on the elliptic curve algorithm is
always too long: the compressed format
has 33 bytes and non-compressed has
65 bytes. The address is for reducing the
number of bytes that the receiver needs to
identify and is generated as follows:

Generate the private key and public key.

Perform the SHA256 hash algorithm on

the public key to derive a 32-byte hash
value.

Perform the RIPEMD-160 algorithm on the
derived hash value to get a 20-byte hash
value, which is called Hash160.

Perform the SHA256 hash algorithm
twice on the 21-byte array (composed
of the version number and Hash160)
to get the first four bytes of the result,

AICHAIN
Yellowpaper

6

AIC
HAIN

which is called the checksum. And enter
the derived checksum at the end of the
21-byte array.

Encode the 25-byte array based on Base58
format to derive the address.

Due to the characteristics of elliptic curve
multiplication and hash functions, you
can derive the public key from the private
key and also derive the address from the

public key, a process which is irrevers-
ible. Therefore, the private key is the most
crucial part in the entire system. Leaking
the private key means losing everything.

If you want to spend the assets of an
address, you need to create a transaction
and use the private key corresponding to
that address to sign it. But if you want to
transfer assets to an address, just need to
transfer the public address.

2.5 Some address forms

2.5.1 P2PKH (Pay to Public Key Hash)

In the present bitcoin network, most transactions are based on P2PKH. The following is a
P2PKH lock script and unlock script:

<sig> means the signature, and <PubK> means the public key. And specific steps are as
follows:

Unlock script

(scriptSig)

Provided by the user

and used in the unlock

operation.

When creating a transaction, the above script exists in the

output of the transaction and is unlocked together with

the part submitted by the user.

The end is TRUE or FALSE.

<sig><PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

Lock script

(scriptPubKey)+

AICHAIN
Yellowpaper

7

AIC
HAIN

<sig>

<sig>

<sig>

<sig>

PubK

PubK

PubK

PubK

PubKHash

Stack

Stack

Stack

Stack

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

Script

Script

Script

Script

Execute the pointer: put sig data on the top of the stack.

Execute the pointer: put PubK on the top of the stack.

Execute the pointer: copy the data on the top of the stack and put it

on the top of the stack(DUP).

Execute the pointer: perform HASH160 operation on the data

which is on the top of the stack.

Formula: RIPEMD160(SHA256(PubK))

AICHAIN
Yellowpaper

8

AIC
HAIN<sig>

<sig>

TRUE

PubK

PubK

PubKHash

PubKHash

Stack

Stack

Stack

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

<sig> <PubK> DUP HASH160 <PubKHash> EQUALVERIFY CHCKSIG

Script

Script

Script

Execute the pointer:

put the PubKHash which is in the script on the top of the stack.

Execute the pointer: compare the top two data in the stack.

If they are the same, remove all and continue execution;

if not, terminate and return FALSE.

Execute the pointer: use PubK public key to verify signature data sig.

If succeed, return TRUE; if not, return FALSE.

AICHAIN
Yellowpaper

9

AIC
HAIN

It can be seen that two tests must be
verified, the first is whether the Public
Key can be converted to the correct
address, and the second is whether the
Signature is valid, that is, whether you
are the owner of the Public Key, meaning
you have the corresponding private key
(Private Key).

The content of the Signature is mainly
the result of operations between the
transaction (the Hash of transaction
information) and the private key , which
is usually a coordinate R, S. At the time
of verification, the signature results, the
transaction summary, and the public key
are calculated, and the resulting verifica-
tion signature is finally obtained as TRUE
or FALSE.

2.5.2 P2PK (Pay to Public Key)

The P2PK lock version of the script is as
follows:

<Public Key A> OP_CHECKSIG

The script used for unlocking is a simple
signature:

<Signature from Private Key A>

The combination script confirmed by the
transaction validation software is:

<Signature from Private Key A> <Public
Key A> OP_CHECKSIG

It has been found that this rule is much

simpler than P2PKH, as only one step is
verified and the address verification is
less. In fact, the main purpose of creating
P2PKH is to make the address shorter and
make it more convenient to use. What’s
more, the core content of Bitcoin is also
P2PK.

2.5.3 P2SH (Pay to Script Hash)

The general form of the locking script
with M-N multisignature is:

M <Public Key 1> <Public Key 2> ... <Public
Key N> N OP_CHECKMULTISIG

Among them, N is the total number
of archived public keys, and M is the
minimum number of public keys that
required for activation of the transaction.

For example, 2-3 multisignature
conditions:

2 <Public Key A> <Public Key B> <Public
Key C> 3 OP_CHECKMULTISIG

The above locked script can be unlocked
by a script containing a signature and a
public key:

OP_0 <Signature B> <Signature C>

OP_0 is a placeholder, and it doesn’t have
any practical significance.

Two combinations of scripts will form a
validation script:

AICHAIN
Yellowpaper

10

AIC
HAIN

OP_0 <Signature B> <Signature C> 2
<Public Key A> <Public Key B> <Public Key
C> 3 OP_CHECKMULTISIG

P2SH is a simplified version of the MS
multisignature. If P2SH is used for the
same 2-3 multiple signature conditions as
above, the steps are as follows:

To lock a script:

Lock a script:

2 <Public Key A> <Public Key B> <Public
Key C> 3 OP_CHECKMULTISIG

For locking scripts, the SHA256 hash
algorithm is first used, and then the
RIPEMD160 algorithm is applied to it. 20
bytes of one script:

8ac1d7a2fa204a16dc984fa81cfd-
f86a2a4e1731

So the lock of a script is changed to:

OP_HASH160 8ac1d7a2fa204a16dc-
984fa81cfdf86a2a4e1731 OP_EQUAL

This lock-in script is much shorter than
the locking script originally used by MS.
When the receivers want to use the UTXO
in this transaction, they need to submit
the unlocking script (here it can also be
called the redemption script):

<Sig1> <Sig2> <2 PK1 PK2 PK3 PK4 PK5 5
OP_CHECKMULTISIG>

Combined with a locking script：

<Sig1> <Sig2> <2 PK1 PK2 PK3 PK4 PK5
5 OP_CHECKMULTISIG> OP_HASH160
8ac1d7a2fa204a16dc984fa81cfd-
f86a2a4e1731 OP_EQUAL

Using the operation rules in the 2.5.1
chapter, it is obvious that the verification
process is divided into two steps. First, it is
whether the redemption script attached to
the receiver is consistent with the sender’s
locking script. If so, it will run the script
and verify the multisignature.

A feature of P2SH is that the responsi-
bility of making the script is given to the
recipient, the advantage of which is to
relieve the node’s storage pressure.

The multisignature address is an address
is generated by 2 or more public keys.
When using N public keys to generate
multiple signature addresses, it can be
agreed that at least M private keys are
needed to sign the transaction when
verifying the signatures, which must meet
the following conditions:

N >= 2

N >= M >= 1

AICHAIN
Yellowpaper

11

AIC
HAIN

 Mining Algorithm

3.1 Lyra2DC (DC – Dynamic Complexity)

A NIST5 based chained algorithm
“Lyra2DC” (DC – Dynamic Complexity), is
proposed with customizable parameters
useful for thwarting future threats to
the ASIC (Application Specific Integrated
Circuit). Adapted from the Lyra2RE
algorithm used by Vertcoin and Monacoin,
Lyra2DC is specifically designed with
this purpose in mind and affords lower
power consumption and cooler GPU
temperatures. Lyra2 (the principal part
of the chained algorithm) allows you
to change memory usage and time cost
independently, giving you more leverage
against ASICs.

Lyra2DC is a chained algorithm consisting
of five different hash functions: Keccak,
Skein, Groestl, Blake and Lyra2.The
purpose of AICHAIN is to:

Leveraging industry proven hashing
algorithms, we were able to create the
most secure, robust, enduring chained
algorithm to date that is both easier
on GPUs and resistant to ASICs. At this
time we have decided not to implement
an “N factor” schedule as it is nearly
impossible to predict the future. However,
Lyra2DC will give us the flexibility to
make changes whenever that becomes
necessary.

Due to the chained nature of the
algorithm, GPU miners will be inherently
hard to optimize, meaning that power
draw and heat can be reduced. This has
been a desired feature for some time with
Scrypt-N coins that see dropping hash
rates due to high energy consumption,
while Vertcoin (which used Lyra2RE
) has consistently had a higher $/Day/
Normalized MH/s all than other coins.

As was previously detailed in the Lyra2
white paper, Lyra2 is strictly sequential
in nature, using a “cryptographic sponge”
at its core. This means that paralleliza-
tion of the algorithm will be practically
impossible with each step relying on the
previous computation steps.

Unlike Scrypt-N, time cost and memory
cost are separate, giving independent

Blake-256

Skein-256

Lyra2 (nRows=8, nCols=8, TimeCost=1)

Keccak-256

Groestl-256

AICHAIN
Yellowpaper

12

AIC
HAIN

3.2 Password Hashing Schemes (PHS)

control over both parameters. ASICs have
been far easier to develop for Scrypt-N
than they will be for Lyra2DC because
increasing the N-factor of Scrypt simply
involves more iterations of the algorithm.
While increasing the time cost under
Lyra2 only involves more iteration,
increasing the memory requirement
means that any potential ASIC device
would have to physically be designed
with more memory for each thread. In the
future, if ASICs were ever developed for
Lyra2DC, we could simply fork to a higher
memory requirement and those ASICs
would no longer properly function.

Many crypto-currencies claim to have

ASIC-resistant algorithms, but many of
them are only so because no ASIC has
been made for them yet. It has been
rumored that FPGAs for X11 already exist
and Neoscrypt only uses more rounds of
cipher functions. By contrast, Lyra2DC
aims to be ASIC-resistant at heart,
allowing for less disruption to miners
in the future due to our ability to simply
change algorithm parameters rather than
change the algorithm all together. It will
also free up time to focus on developing
new features without having to worry
about constantly implementing new
algorithms every time there is an ASIC
threat.

As previously discussed, the basic
requirement for a PHS is to be non-invert-
ible, so that recovering the password from
its output is computationally unfeasible.
Moreover, a good PHS output is expected
to be indistinguishable from random
bit strings, preventing an attacker from
discarding part of the password space
based on perceived patterns. In principle,
those requirements can be easily accom-
plished simply by using a secure hash
function, which by itself ensures that the
best attack route against the derived key
is through brute force (possibly aided
by a dictionary or “usual” password
structures).

What any modern PHS does, then, is to
include techniques that raise the cost of
brute-force attacks. A first strategy for
accomplishing this is to take as input not
only the user memorizable password
itself, but also a sequence of random
bits known as salt. The presence of such
random variables thwarts several attacks
based on pre-built tables of common
passwords, i.e., the attacker is forced to
create a new table from scratch for every
different salt. The salt can, thus, be seen
as an index into a large set of possible
keys derived from a password, and need
not to be memorized or kept secret.

A second strategy is to purposely raise

AICHAIN
Yellowpaper

13

AIC
HAIN

the cost of every password guess in terms
of computational resources, such as
processing time and/or memory usage.
This certainly also raises the cost of
authenticating a legitimate user entering
the correct password, meaning that
the algorithm needs to be configured
so that the burden placed on the target
platform is minimally noticeable by users.
Therefore, the legitimate users and their
platforms are ultimately what impose
an upper limit on how computationally
expensive the PHS can be for themselves
and for attackers. For example, a human
user running a single PHS instance is
unlikely to consider it a nuisance that
the password hashing process takes a
full second to run and uses a small part
of the machine’s free memory, e.g., 20
MB. On the other hand, supposing that
the password hashing process cannot
be divided into smaller parallelizable
tasks, achieving a throughput of 1,000
passwords tested per second requires 20
GB of memory and 1,000 processing units
as powerful as that of the legitimate user.

A third strategy, especially useful when
the PHS involves both processing time
and memory usage, is to use a design
with low parallelizability. The reasoning
is as follows. For an attacker with access
to p processing cores, there is usually
no difference between assigning one
password guess to each core or paral-
lelizing a single guess so it is processed
p times faster: in both scenarios, the
total password guessing throughput is
the same. However, a sequential design
that involves configurable memory

usage imposes an interesting penalty
to attackers who do not have enough
memory for running the p guesses in
parallel. For example, suppose that testing
a guess involves m bytes of memory and
the execution of n instructions. Suppose
also that the attacker’s device has 100m
bytes of memory and 1000 cores, and that
each core executes n instructions per
second. In this scenario, up to 100 guesses
can be tested per second against a strictly
sequential algorithm (one per core), the
other 900 cores remaining idle because
they have no memory to run.

Aiming to provide a deeper under-
standing on the challenges faced by PHS
solutions, in what follows we discuss the
main characteristics of platforms used by
attackers and then how existing solutions
avoid those threats.

Attack platforms:

The most dangerous threats faced by any
PHS come from platforms that benefit
from “economies of scale”, especially
when cheap, massively parallel hardware
is available. The most prominent
examples of such platforms are Graphics
Processing Units (GPUs) and custom
hardware synthesized from FPGAs.

1 Graphics Processing Units (GPUs).
Following the increasing demand for
high-definition realtime rendering,
Graphics Processing Units (GPUs) have
traditionally carried a large number of
processing cores, boosting their paral-
lelization capability. Only more recently,

AICHAIN
Yellowpaper

14

AIC
HAIN

however, GPUs evolved from specific
platforms into devices for universal
computation and started to give support to
standardized languages that help harness
their computational power, such as CUDA
and OpenCL). As a result, they became
more intensively employed for more
general purposes, including password
cracking.

As modern GPUs include a few thousands
processing cores in a single piece of
equipment, the task of executing multiple
threads in parallel becomes simple and
cheap. They are, thus, ideal when the
goal is to test multiple passwords inde-
pendently or to parallelize a PHS’s
internal instructions. For example,
NVidia’s Tesla K20X, one of the top GPUs
available, has a total of 2,688 processing
cores operating at 732 MHz, as well as 6
GB of shared DRAM with a bandwidth
of 250 GB per second. Its computational
power can also be further expanded
by using the host machine’s resources,
although this is also likely to limit the
memory throughput. Supposing this GPU
is used to attack a PHS whose param-
etrization makes it run in one second
and take less than 2.23 MB of memory,
it is easy to conceive an implementation
that tests 2,688 passwords per second.
With a higher memory usage, however,
this number will drop due tothe GPU’s
memory limit of 6 GB. For example, if a
sequential PHS requires 20 MB of DRAM,
the maximum number of cores that could
be used simultaneously would be 300,
only 11% of the total available.

2 Field Programmable Gate Arrays
(FPGAs). An FPGA is a collection of
configurable logic blocks wired together
and with memory elements, forming a
programmable and high-performance
integrated circuit. In addition, as such
devices are configured to perform a
specific task, they can be highly optimized
for their purpose (e.g., using pipelining).
Hence, as long as enough resources (i.e.,
logic gates and memory) are available
in the underlying hardware, FPGAs
potentially yield a more cost-effective
solution than what would be achieved
with a general-purpose CPU of similar
cost. When compared to GPUs, FPGAs may
also be advantageous due to the latter’s
considerably lower energy consumption,
which can be further reduced if its circuit
is synthesized in the form of custom logic
hardware (ASIC).

A recent example of password cracking
using FPGAs is presented below. Using
a RIVYERA S3-5000 cluster with 128
FPGAs against PBKDF2- SHA-512, the
authors reported a throughput of 356,352
passwords per second in an architec-
ture having 5,376 passwords processed
in parallel. It is interesting to notice that
one of the reasons that made these results
possible is the small memory usage of
the PBKDF2 algorithm, as most of the
underlying SHA-2 processing is performed
using the device’s memory cache (much
faster than DRAM). Against a PHS
requiring 20 MB to run, for example, the
resulting throughput would presumably

AICHAIN
Yellowpaper

15

AIC
HAIN

be much lower, especially considering that
the FPGAs employed can have up to 64 MB
of DRAM and, thus, up to three passwords
can be processed in parallel rather than
5,376.

Interestingly, a PHS that requires
a similar memory usage would be
troublesome even for state-of-the-art

clusters, such as the newer RIVYERA
V7-2000T. This powerful cluster carries
up to four Xilinx Virtex-7 FPGAs and up
to 128 GB of shared DRAM, in addition to
the 20 GB available in each FPGA. Despite
being much more powerful, in principle
it would still be unable to test more than
2,600 passwords in parallel against a PHS
that strictly requires 20MB to run.

3.3 Scrypt

Now we will briefly describe the Scrypt
and Lyra2 algorithm for the sake of
completeness. Scrypt was a second
generation POW algorithm, compared
with the RSA256 used in bitcoin, while
we believe the Lyra2 is a third generation
algorithm for improved ASIC resistance.

Arguably, the main password hashing
solutions available in the literature are:
PBKDF2, bcrypt and scrypt. Since scrypt
is only PHS among them that explores
both memory and processing costs and,
thus, is directly comparable to Lyra2, its
main characteristics are described in
what follows. For the interested reader,
a discussion on PBKDF2 and bcrypt is
provided in the appendices.

The design of scrypt focus on coupling
memory and time costs. For this, scrypt
employs the concept of “sequential
memory-hard” functions: an algorithm
that asymptotically uses almost as much
memory as it requires operations and

for which a parallel implementation
cannot asymptotically obtain a signifi-
cantly lower cost. As a consequence, if the
number of operations and the amount of
memory used in the regular operation of
the algorithm are both (R), the complexity
of a memory-free attack (i.e., an attack
for which the memory usage is reduced
to (1)) becomes Ω(R2), where R is a system
parameter.

The following steps compose scrypt’s
operation (see Algorithm 1). First, it
initializes p b-long memory blocks, Bi.
This is done using the PBKDF2 algorithm
with HMAC-SHA-256 as underlying
hash function and a single iteration.
Then, each Bi is processed (incremen-
tally or in parallel) by the sequential
memory-hard ROMix function. Basically,
ROMix initializes an array M of R b-long
elements by iteratively hashing Bi. It
then visits R positions of M at random,
updating the internal state variable X
during this (strictly sequential) process in

AICHAIN
Yellowpaper

16

AIC
HAIN

order to ascertain that those positions are indeed available in memory. The hash function
employed by ROMix is called BlockMix , which emulates a function having arbitrary
(b-long) input and output lengths; this is done using

Algorithm 1 Scrypt.

Param: h d BlockMix ’s internal hash function output length
Input: pwd d The password
Input: salt d A random salt
Input: k d The key length
Input: b d The block size, satisfying b = 2r • h
Input: R d Cost parameter (memory usage and processing time)
Input: p d Parallelism parameter
Output: K d The password-derived key
1: (B0...Bp−1) ←PBKDF2HM AC−SHA−256(pwd, salt, 1, p • b)
2: for i ← 0 to p − 1 do
3: Bi ←ROMix(Bi, R)
4: end for
5: K ←PBKDF2HMAC−SHA−256(pwd, B0 " B1 " ... " Bp−1, 1, k)
6: return K d Outputs the k-long key
7: function ROMix(B, R) d Sequential memory-hard function
8: X ← B
9: for i ← 0 to R − 1 do d Initializes memory array M
10: Vi ← X ; X ←BlockMix(X)
11: end for
12: for i ← 0 to R − 1 do d Reads random positions of M
13: j ← Integerif y(X) mod R
14: X ←BlockMix(X (+) Mj)
15: end for
16: return X
17: end function
18: function BlockMix(B) d b-long in/output hash function
19: Z ← B2r−1 d r = b/2h, where h = 512 for Salsa20/8
20: for i ← 0 to 2r − 1 do
21: Z ← Hash(Z (+) Bi) ; Yi ← Z
22: end for
23: return (Y0, Y2, ..., Y2r−2, Y1, Y3, Y2r−1)
24: end function

the Salsa20/8 stream cipher, whose output length is h = 512. After the p ROMix processes
are over, the Bi blocks are used as salt in one final iteration of the PBKDF2 algorithm,
outputting key K.

AICHAIN
Yellowpaper

17

AIC
HAIN

Scrypt displays a very interesting design,
being one of the few existing solutions
that allow the configuration of both
processing and memory costs. One of
its main shortcomings is probably the
fact that it strongly couples memory and
processing requirements for a legitimate
user. Specifically, scrypt’s design prevents
users from raising the algorithm’s
processing time while maintaining a
fixed amount of memory usage, unless
they are willing to raise the p parameter
and allow further parallelism to be
exploited by attackers. Another incon-
venience with scrypt is the fact that it
employs two different underlying hash
functions, HMAC-SHA-256 (for the PBKDF2
algorithm) and Salsa20/8 (as the core
of the BlockMix function), leading to
increased implementation complexity.
Finally, even though Salsa20/8’s known
vulnerabilities are not expected to
compromise the security of scrypt, using
a stronger alternative would be at least
advisable, especially considering that
the scheme’s structure does not impose
serious restrictions on the internal hash
algorithm used by BlockMix. In this

case, a sponge function could itself be an
alternative, with the advantage that, since
sponges support inputs and outputs of
any length, the whole BlockMix structure
could be replaced.

Inspired by scrypt’s design, Lyra2 builds
on the properties of sponges to provide
not only a simpler, but also more secure
solution. Indeed, Lyra2 stays on the
“strong” side of the memory-hardness
concept: the processing cost of attacks
involving less memory than specified
by the algorithm grows much faster
than quadratic ally, surpassing the best
achievable with scrypt and thwarting the
exploitation of time-memory trade-offs
(TMTO). This characteristic should
discourage attackers from trading
memory usage for processing time, which
is exactly the goal of a PHS in which
usage of both resources are configurable.
In addition, Lyra2 allows for a higher
memory usage for a similar processing
time, increasing the cost of regular attack
venues (i.e., those not exploring TMTO)
beyond that of scrypt’s.

3.4 Lyra2

As any PHS, Lyra2 takes as input a salt
and a password, creating a pseudorandom
output that can then be used as key
material for cryptographic algorithms or
as an authentication string. Internally, the
scheme’s memory is organized as a matrix

that is expected to remain in memory
during the whole password hashing
process: since its cells are iteratively read
and written, discarding a cell for saving
memory leads to the need of re-computing
it whenever it is accessed once again,

AICHAIN
Yellowpaper

18

AIC
HAIN

Algorithm 2 The Lyra2 Algorithm.

Param: H d Sponge with block size b (in bits) and underlying permutation f
Param: Hρ d Reduced-round sponge for use in the Setup and Wandering
phases
Param: ω d Number of bits to be used in rotations (recommended: a multiple of
W)
Input: pwd d The password
Input: salt d A salt
Input: T d Time cost, in number of iterations (T “ 1)
Input: R d Number of rows in the memory matrix
Input: C d Number of columns in the memory matrix (recommended: C • ρ “ ρmax)
Input: k d The desired hashing output length, in bits
Output: K d The password-derived k-long hash
1: d Bootstrapping phase: Initializes the sponge’s state and local variables
2: d Byte representation of input parameters (others can be added)
3: params ← len(k) “ len(pwd) “ len(salt) “ T “ R “ C
4: H.absorb(pad(pwd “ salt “ params)) d Padding rule: 10*1.
5: gap ← 1 ; stp ← 1 ; wnd ← 2 ; sqrt ← 2 d Initializes visitation
step and window
6: prev0 ← 2 ; row1 ← 1 ; prev1 ← 0
7: d Setup phase: Initializes a (R × C) memory matrix, it’s cells having b bits each
8: for (col ← 0 to C −1) do {M [0][C −1−col] ← Hρ.squeeze(b)} end for
9: for (col ← 0 to C −1) do {M [1][C −1−col] ← M [0][col] (+) Hρ.duplex(M [0][col], b)}
end for
10: for (col ← 0 to C −1) do {M [2][C −1−col] ← M [1][col] (+) Hρ.duplex(M [1][col], b)}
end for
11: for (row0 ← 3 to R − 1) do d Filling Loop: initializes remainder rows
12: d Columns Loop: M [row0] is initialized; M [row1] is updated
13: for (col ← 0 to C − 1) do
14: rand ← Hρ.duplex(M [row1][col] [+] M [prev0][col] [+] M [prev1][col], b)
15: M [row0][C − 1 − col] ← M [prev0][col] (+) rand
16: M [row1][col] ← M [row1][col] (+) rot(rand) d rot(): right rotation by ω bits
17: end for
18: prev0 ← row0 ; prev1 ← row1 ; row1 ← (row1 + stp) mod wnd
19: if (row1 = 0) then d Window fully revisited
20: d Doubles window and adjusts step
21: wnd ← 2 • wnd ; stp ← sqrt + gap ; gap ← −gap
22: if (gap = −1) then {sqrt ← 2 • sqrt} end if d Doubles sqrt every other it-
eration
23: end if
24: end for
25: d Wandering phase: Iteratively overwrites pseudorandom cells of the memory ma-
trix
26: d Visitation Loop: 2R • T rows revisited in pseudorandom fashion
27: for (wCount ← 0 to R • T − 1) do
28: row0 ← lsw(rand) mod R ; row1 ← lsw(rot(rand)) mod R d Picks pseudo-
random rows

AICHAIN
Yellowpaper

19

AIC
HAIN

29: for (col ← 0 to C − 1) do d Columns Loop: updates M [row0,1]
30: d Picks pseudorandom columns
31: col0 ← lsw(rot2(rand)) mod C ; col1 ← lsw(rot3(rand)) mod C
32: rand ← Hρ.duplex(M [row0][col] [+] M [row1][col] [+] M [prev0][col0] [+] M [prev1]
[col1], b)
33: M [row0][col] ← M [row0][col] (+) rand d Updates ftrst pseudorandom row
34: M [row1][col] ← M [row1][col] (+) rot(rand) d Updates second pseudorandom
row
35: end for d End of Columns Loop
36: prev0 ← row0 ; prev1 ← row1 d Next iteration revisits most recently up-
dated rows
37: end for d End of Visitation Loop
38: d Wrap-up phase: output computation
39: H.absorb(M [row0][0]) d Absorbs a ftnal column with full-round sponge
40: K ← H.squeeze(k) d Squeezes k bits with full-round sponge
41: return K d Provides k-long bitstring as output

until the point it was last modified. The construction and visitation of the matrix is done
using a stateful combination of the absorbing, squeezing and duplexing operations of the
underlying sponge (i.e., its internal state is never reset to zero), ensuring the sequential
nature of the whole process. Also, the number of times the matrix’s cells are revisited
after initialization is defined.

By the user, allowing Lyra2’s execution time to be fine-tuned according to the target
platform’s resources.

AICHAIN
Yellowpaper

20

AIC
HAIN

Application information in the UTXO
trading model

4.1 Application Deployment Principles

4.2 The expansion of transaction data

Based on the UTXO trading model, the
AICHAIN can expand a space after the
transaction’s output VOUT data. The space
is used to store AI application description
on the blockchain. That can allow a
transaction to deploy one application to
the blockchain with different version of
transaction.

The information of the application unit
needs to be included:

1 The type of application : provide
services directly or provide executable
files.

2 The address to access: provide the
address of the service or the access
address of the executable resource

directly

3 the description of application:
name,version,cost and other information.

4 Owner’s public key: The unique
address used to generate the application.

Only part of application’s information will
be stored on blockchain, in order to save
the storage resource of blockchain.

The transaction ID is used as the position
ID for an application unit.

Acquiring eligibility or rights to use one
application by transferring AICHAIN’s
token (AIT) to the address of this
application unit.

The transaction data based on UTXO
model is mainly composed of two parts:
input and output.

Input: consists of one or more unspent
transactions (unspent_tx_id, vout_n) and
signature data.

Output: consists of one or more transfer

destination addresses (script_pubkey),
and the value of the AIT output to each
address.

The transactional data in the AICHAIN
has been expanded to add the area of APP
units after VOUT outputs data, which can
be used to deploy one APP unit.

AICHAIN
Yellowpaper

21

AIC
HAIN

4.3 Application Deployment Unit : ADU

The application deployment unit contract name: ADU.

4.3.1 Customizable data content

AICHAIN allows third party applications to get data space on a block chain by publishing
ADU applications, which are used to store [key and value] data. Third party applica-
tions can customize these data field names and content meanings to meet the needs of
application system.

The fifth bit of the nibble of nVersion is
used as a flag to deploy the application
unit. When this bit is set to 1, it indicates
that the transaction contains at least one
APP application deployment unit.

The condition is: (nVersion &
0x08000000)> 0 holds, indicating that the
transaction contains the APP application
deployment unit.

The sixth bit of the most significant byte
of nVersion is used as the flag of the
application execution unit. When this
bit is 1, it indicates that the transaction
contains at least one app execution unit.

The conditions are: (nVersion &
0x04000000)> 0 holds, indicating that the
transaction contains the app execution
unit.

nVersion Vin(one or more unspent tx)

Application Deployment Unit or Application Execution Unit

Vout(N output) nLockTime

The expansion of insert

AICHAIN
Yellowpaper

22

AIC
HAIN

· ADU_PUBKEY: The public key is generated by the application publisher using one’s own
private key. The first byte describes the length of the public key data followed by the
public key data.

For example: public key hexadecimal data:
03cc149f66520680d85e18a01a8261a2746ee45fb5fb07ad13e9c316e1c955553d

The value of the first byte indicates the length of the entire public key data:
chHeader=pubkey _ bin[0];
if (chHeader == 2 || chHeader == 3)
 return 33; // total length = 33 bytes
if (chHeader == 4 || chHeader == 6 || chHeader == 7)
return 65; // total length = 65 bytes

Field name Type definition Description

ADU _ PUBKEY std::vector<unsigned char> pubkey
public key of private key
by ADU deployer

ADU _ TYPE uint32

ADU type:
0:reserved
1:data store
Others: reserved

ADU _ KEY _ NAME[0]
std::vector<char> keyname
keyname[0] is the length

Name of key

ADU _ KEY _ VALUE[0]
std::vector<unsigned char> key-
value
keyvalue[0] is the length

Value of key

… …

ADU _ KEY _ NAME[n]
std::vector<char> keyname
keyname[0] is the length

Name of key

ADU _ KEY _ VALUE[n]
std::vector<unsigned char> key-
value
keyvalue[0] is the length

Value of key

AICHAIN
Yellowpaper

23

AIC
HAIN

· ADU_TYPE: the type of application deployment unit. Currently this value is defined as 1.
All other values are reserved.

· On the block chain, the above data is stored in the database by the following information
fields:

[key:value] corresponds to a PUBKEY; each PUBKEY has different [key:value] data.

All data contents corresponding to respective custom ADU’s are identified by ADU_ADDR.

4.3.2 Application case: standard application unit information

For intelligent application resources, the following [key:value] fields can be defined in the
ADU of the standard application unit information in accordance with the rules of the 4.3.1
section:

Keyname KeyValue Description

AIUNIT _ TYPE uint32 in section 5.4

AIUNIT _ DATA _ HASH uint32
The HASH value of the ap-
plication and data resource
data

AIUNIT _ FEE int64
Fee for usage of resource.
unit is 0.00000001 AIT

AIUNIT _ NAME
std::vector<char> name
name[0] is the length

AI application unit name

AIUNIT _ INFO _ URL
std::vector<unsigned char> info
info[0] is the length

A URL to get info in de-
tails.

ADU_ADDR ADU_PUBKEY keyname keyvalue

ADU _ ADDR _ user ADU _ PUBKEY _ user ADU _ KEY _ NAME[0] ADU _ KEY _ VALUE[0]

… …

ADU _ ADDR _ user ADU _ PUBKEY _ user ADU _ KEY _ NAME[n] ADU _ KEY _ VALUE[n]

AICHAIN
Yellowpaper

24

AIC
HAIN

· AIUNIT_TYPE: The standard application type is used to indicate that the standard
application unit can be an executable file, data resources, runtime platform or direct
services(micro-SOA). It is currently defined as 4 kinds of AI units.

· AIUNIT_HASH: The HASH value of the AI unit data is used to check the data of the
application and prevent tampering. When the application data changes, you need to issue
an AEU to update this key’s value to the data area corresponding to the ADU unit.

· AIUNIT_FEE: The tariff is how many AI coins you need to pay when using this ADU, the
unit is: 0.00000001 AIT (minimum unit).

· application’s name, the introduction of function, the location URL to obtain application
resources and instructions for use, etc. This URL is specified as JSON body returned for
HTTP GET request with agreed format. Defined as follows:

{

 “version”:”1.0.1”,
 “name”:”Dog or Cat?”,
 “resource”:”https://myapplication.com/DogCat.zip”,
 “description”:”This is an application to identify a dog or cat from an image”,
 “runtime”:[
 {
 “vm _ type”:”docker”,
 “version”:”0.01”
 }
]
}

Where resource is the address of the application resource.

AICHAIN
Yellowpaper

25

AIC
HAIN

Field name Type definition Description

AEU _ SIGNATURE
std::vector<unsigned char> signa-
ture
signature[0] is the length

Signature of AEU data content

ADU _ txid uint256
Txid of ADU deploying on
blockchain.

usrPubKey std::vector<unsigned char> pubkey
The public key of user’s pri-
vate key when sending AEU

OP _ CODE=1 uint8
0: reserved
1: read

ADU _ PUBKEY _ user
std::vector<unsigned char> pubkey
pubkey[0] is the length

To read values of the keyname
belonging to this pubkey
Can be null, then will read
all keyname’s value of all
pubkeys.

ADU _ KEY _ NAME
std::vector<char> keyname
keyname[0] is the length

Name of key
Can be null, then will read
all keyname’s value of the
pubkey

4.4 Application execution unit : AEU

The agreed name of the application execution unit is AEU.

4.4.1 Custom data modification execution unit information

The user is allowed to change the content of the corresponding custom data area by
sending a transaction to a specified ADU address.

The read operation does not need to send a transaction, and can read directly.

Writing and deleting operations are required to send transactions before they can be
executed.

· Reading operations, there is no real transaction, and users get data directly from the
local node interface.

AICHAIN
Yellowpaper

26

AIC
HAIN

This request corresponds to the read:

ADU_ADDR:usrPubKey:ADU_KEY_NAME:keyvalue

AEU_SIGNATURE: It is the result of the signature of the above AEU’s data area after the
AEU_SIGNATURE field. Use usrPubKey for signature verification.

· The delete operation generates real transactions and modifies the database content of
the block chain, It is only allowed to operate on the data in the executor’s own public key
range:

· Write operations need to send a transaction and will modifiy the database content of the
block chain, allowing only the operation of the data under the executor’s own public key:

Field name Type definition Description

AEU _ SIGNATURE
std::vector<unsigned char> signa-
ture
signature[0] is the length

Signature of AEU data content

ADU _ txid uint256
Txid of ADU deploying on
blockchain.

usrPubKey std::vector<unsigned char> pubkey
The public key of user’s pri-
vate key when sending AEU

OP _ CODE=2 uint8 2: delete

ADU _ KEY _ NAME[0]
std::vector<char> keyname
keyname[0] is the length

Name of key

… …

ADU _ KEY _ NAME[n]
std::vector<char> keyname
keyname[0] is the length

Name of key

AICHAIN
Yellowpaper

27

AIC
HAIN

Field name Type definition Description

AEU _ SIGNATURE
std::vector<unsigned char> signa-
ture
signature[0] is the length

Signature of AEU data content

ADU _ txid uint256
Txid of ADU deploying on
blockchain.

usrPubKey std::vector<unsigned char> pubkey
The public key of user’s pri-
vate key when sending AEU

OP _ CODE=3 uint8 3: write

ADU _ KEY _ NAME[0]
std::vector<char> keyname
keyname[0] is the length

Name of key

ADU _ KEY _ VALUE[0]
std::vector<unsigned char> key _
value
key _ value[0] is the length

Value of key

… …

ADU _ KEY _ NAME[n]
std::vector<char> keyname
keyname[0] is the length

Name of key

ADU _ KEY _ VALUE[n]
std::vector<unsigned char> key _
value
key _ value[0] is the length

4.4.2 Application case: standard application executive unit information

When a user wants to use standard smart applications, they need send a transaction with
AEU, which does not necessarily change ADU’s custom data area. The [keyname:keyvalue]
corresponding to the write operation AEU unit is empty. There may be third party appli-
cations that require users to submit data when they need to be launched, which can be
submitted through [keyname:keyvalue] in the AEU.

In addition, the usrPubKey in AEU will be used to distinguish user identity. When
invoking the service provided by the application provider, the public key is required to
verify the identity. Meanwhile, the public key and private key(usrPrivKey) can be used to
encrypt data communication with the application provider.

AICHAIN
Yellowpaper

28

AIC
HAIN

Application deployment and
implementation

5.1 ADU location identifier

5.2 P2SH address of ADU unit

When we use an app, we first need to locate the application unit in the blockchain. Based
on UTXO model, when the application unit is deployed in the transaction data, the only
one identifier is the transaction ID when deploying the application:

When a user wants to obtain the corresponding application, he can use ADU_txid to find
the corresponding transaction data in the blockchain, and then extract the ADU unit
information from the corresponding transaction data.

When you need to use an application, you need to transfer the AIT to the address of the
application. In order to make full use of blockchain transactions to record the usage
history of application units, it is necessary to ensure the uniqueness of the corresponding
address of the application. All transactions with this application address can be audited
separately.

When deploying application, we need create a transaction with a specific nVersion as
below, then we can put the ADU information unit into the transaction data.

Field name Type definition Implication

ADU _ txid uint256 Transaction ID for deploying the application

Transaction [nVersion VIN VOUT ADU]

nVersion

(nVersion & 0x08000000) > 0

AICHAIN
Yellowpaper

29

AIC
HAIN

5.3 Operating environment of the application

When creating the transaction, the ADU unit information contains a public key field:
ADU_PUBKEY, which is provided by the deployer. The deployer holds the corresponding
private key: ADU_PRIKEY.

After creating the original transaction, we can know the transaction ID:

This transaction ID is the HASH of the transaction itself, this value participates in the
generation operation of ADU address as a private key:

Tx transaction ID, 256 bits of data as private key: PrivKey_TX

The public key generated with this private key: PubKey_TX

Use this public key and ADU_PUBKEY to generate a P2SH-type address with a M/N (both
M and N are 2) multiple signature: ADU_ADDR. This address corresponds to the address of
the ADU application unit.

People who have the private key, ADU_PRIVKEY, can control the AIT assets on the ADU_
ADDR. When making the transfer, they only need to use ADU_PRIVKEY and PrivKey_TX to
perform multiple signature on the transfer transaction.

This definition can guarantee the uniqueness of each application address, and is bound to
the location information of blockchain.

The AICHAIN node is equipped with a docker operating environment and standard docker
IMG as the basic operating platform. Operating environments of various programming
languages are pre-built into the IMG, and the supporting programming languages and
versions are released as a unified specification for the public, including the application
automatically downloaded after docker IMG launches, and the entrance and rules of

Field name Type definition Implication

tx _ hash uint256 Transaction ID created when deploying the application

AICHAIN
Yellowpaper

30

AIC
HAIN

5.4 Types of applications

implementation. Therefore, developers can develop and debug their own application
in the docker environment, and the docker operating environment can be updated and
continuously improved with the upgrade of the AICHAIN node.

At the same time, in order to the convenience of later extension and reserve more free
customized space for application publishers, the application types of ADU include an
entrance for providing the service directly, without a supportig operating environment.

5.4.1 Provide executable files

Specify the application type definition: ADU_TYPE=1

An executable package that is applicable to the docker IMG environment, which
is typically in the application developer’s perspective include 2 parts: application
deployment + application execution.

The agreed rule is:

The executable package encapsulation format is zip

The agreed application type is: webapp, of which terminal using the browser to show the
application.

Provide ADU_start.sh as a unified running entry in the zip wrapper inner root directory

In this way, the application developer can customize the ADU_start.sh script in the
executable package for the deployment and startup of the application, based on the docker
IMG environment of the AICHAIN node. There is plenty of flexibility and customization.

5.4.2 Provide direct access to services

Specify this application type definition: ADU_TYPE = 2

The direct service entry is: the web app mode, which is displayed in the browser

The application does not need to download the executable file data, and the URL address

AICHAIN
Yellowpaper

31

AIC
HAIN

5.5 Using the ADU application

for resources in ADU’s detailed information gives direct access to the service.

5.4.3 Provides running platform resources

Specify this application type definition: ADU_TYPE = 3

Allows the service providers that have personalized and customized application running
environment resources to publish their own application running platform resources to
the blockchain.

When an agreed user makes a transaction using this resource, the provider needs
to assign the user an application running platform that allows the user to enter the
“resource” address of the application resource they want to run into the running platform.

5.4.4 Data resources

Resource conventions for data classes ADU_TYPE = 4

Allow vendors with tagged data resources to publish data resource descriptions to the
blockchain for those who need to use data for deep learning.

When an agreed user makes a transaction using this resource, the provider needs to
provide the user with a data resource download address (resource address) that allows
users to download data resources. The provider can also verify the user identity of the
data resource for this download class.

5.4.5 Extend other types of resources

The current maximum value of ADU_TYPE is not more than 0x0000ffff, and the first two
bytes are reserved for later use.

We agree that other resource types expand after this, starting from ADU_TYPE = 5 to
0x0000ffff.

5.5.1 Transaction data containing AEU units

When you need to use an ADU application, you need to transfer an agreed amount of AIT

AICHAIN
Yellowpaper

32

AIC
HAIN

to the ADU_ADDR address, containing information about the AEU unit in this transaction.
Use the following ADU_tx_id information to specify the ADU application to use.

This is a standard transfer transaction data, in order to identify the transaction
containing the AEU unit, We agree that the sixth bit of the highest byte of “nVersion” is the
symbol, when the bit to 1, it indicates the transaction contains an AEU unit.

For the above special deals using APP applications, the nodes of the AICHAIN are
received. First, using ADU_tx_id to extract the transaction data from the APP application
deployment, verify that the address output to the APP in the transfer transaction is
correct (according to the rules of chapter 5.2).Then the APP application unit information
is extracted to verify whether the amount of AIT exported to the APP application address
meets the agreed cost in the ADU application unit in the transfer transaction.

Through the above verification check, the nodes of the AICHAIN will perform two actions:
transferring the transfer transaction to the network and running the APP application.(It’s
ok for users to run the APP later).

5.5.2 Transaction data verification

When you want to use an ADU application, you need to create a transaction that transfers
a specific amount of AIT to the ADU_ADDR address, including the AEC Execution Unit.

There are some check points for this transaction data:

1 Transaction version number check

The conditions are: (nVersion & 0x04000000)> 0 must be true.

Transaction [nVersion VIN VOUT AEU]

nVersion

Check Point 1: (nVersion & 0x04000000)>0

AICHAIN
Yellowpaper

33

AIC
HAINTransaction: [nVersion VIN VOUT AEU]

VOUT : scriptPubKey AEU: ADU_txid

With ADU_txid as the

private key, refer to Section

5.2 Calculation: PubKey_TX

ADU information in the

transaction that extracts

ADU_txid in the blockchain:

ADU_PUBKEY

Check Point 2: ScriptPubKey and ADU_ADDR must be consistent.

Refer to Section 5.2 to generate the ADU_ADDR address using the

two public

2 The output address of the transaction is same as the address of the ADU specified in
the AEC execution unit:

By the use of ADU_txid in AEC execution unit, we can extract ADU data from the block
chain. We can refer to section 5.2 ADU_ADDR Address, compared with the output address
of the VOUT, which must be same.

When the transaction has multiple VOUT cells, it needs to check the output address of each
VOUT. If one output address matches the address of ADU_ADDR, this means it is right for
ADU, and the amount of AIT for transfer to this VOUT is recorded.

3 3. The amount of AI coins that the ADU address received in this transaction is
sufficient:

On the basis of the second step, check the amount of AI coins received at the ADU_ADDR
address in the VOUT, which must be greater than or equal to the ADU_FEE value in the
ADU unit information.

AICHAIN
Yellowpaper

34

AIC
HAIN

Transaction: [nVersion VIN VOUT AEU]

VOUT : nValue AEU extraction: ADU_txid

Extracting the ADU_n ADU

information in the transaction of

the ADU_txid in the blockchain:

ADU_FEE

Check Point 3: VOUT : nValue >= ADU_FEE

On the basis of the transaction signature verification, the above three check points must
be satisfied at the same time to be deemed a legal transaction. Otherwise, the AICHAIN
node will reject the transaction and ensure the consistency of the AEC execution
information and the transaction’s VOUT information.

5.5.3 The application provider verifies the identity of the user

When you need to use the application, we can provide the application service a means to
verify the user identity information. Use the ADU_PUBKEY in the ADU unit and the user’s
own private key: USER_PRIVKEY, and use the ECC asymmetric encryption algorithm to
decrypt the random password issued by the application service provider. After entering
the correct random password, you can begin to use the application service.

Convention: When a user want to use an application, he must pass his own public key
while accessing the webapp portal as a parameter.

Convention: The public key provided by the user must be the public key corresponding to
the signature private key used when creating the transaction of sending AIT to the ADU_
ADDR. Such application providers have the ability to verify AIT payment information.

AICHAIN
Yellowpaper

35

AIC
HAIN

5.6 Running process

For example:

https://myapplication.com/index.html?usrPubKey=03cc149f-
66520680d85e18a01a8261a2746ee45fb5fb07ad13e9c316e1c955553d

Parameter name Type meaning

usrPubKey Hexadecimal string
the public key data corresponding to the
user's private key

The application server uses the above information to generate a random access password
that is passed to the user after encryption, invoked by the interface to decrypt, and
or after decrypting by use of an offline decryption tool, submit to enter the normal
application for use.

Application Encryption: Use USER_PUBKEY and ADU_PRIVKEY

Consumer Decryption: Use ADU_PUBKEY and USER_PRIVKEY

Application providers can customize their own authentication system as they wish.

The AICHAIN has four roles: data provider, application provider, running platform
resource provider, resource consumers. The first three are different types of resources.
Resource consumers are users who use these ADU resources. Consumers can be ordinary
individuals or companies that are developing AI applications(A lot of data is needed for
machine learning)

Definitions of the following 4 companies (or individuals):

A: A company specializing in image tagging, which expects to make money from the data
needed by AI developing.

B: A company that specializes in developing AI applications, which expects to rely on the
developed AI applications to make money.

AICHAIN
Yellowpaper

36

AIC
HAIN

Obtain data from

the resource server

provided by A.

(Not in the block

chain)

C: A company that holds a lot of servers with graphics cards and a running environment
of tensorflow and caffe platform. It expects to rely on these resources to make money.

D: A normal user with a bunch of pictures of cats and dogs in his hand and hopes to find a
tool to help him with classified storage.

5.6.1 Developers use data resources

Developers need data to complete machine learning and develop AI applications.

A: data provider

B: resource consumer

A: Package data, post it to the blockchain

B: Send the AIT to the corresponding address of ADU deployed by A

Create a transaction tx: contains the ADU to describe this data

Create a transaction tx: contains the AEU to use this data

give transaction fee to the miners

give transaction fee to the miners

AICHAIN

AICHAIN
Yellowpaper

37

AIC
HAIN

Obtain data from

the resource server

provided by B.

(Not in the block

chain)

B: Publish the application of recognizing cats and dogs to the blockchain

D: Send the AIT to the address of the ADU unit deployed by B

Create a transaction tx: contains the ADU describing this application

Create a transaction tx: contains the AEU describing this application

give transaction fee to the miners

give transaction fee to the miners

AICHAIN

A: have the picture of dogs and cats, and the identity of each image. (the mark is about
whether it’s dog or cat in the picture)

B: the developer of an AI application designed to identify cats and dogs from pictures, B is
a company.

5.6.2 Applications for users.

This application is for users to use the AI application for recognizing cats and dogs on
their own computers.

B: the application provider.

D: the user.

AICHAIN
Yellowpaper

38

AIC
HAIN

B: Deploy the information of the completed application for recognizing cats and dogs to the
block-chain, and provide AI application executable file data for download.

D: Because the user has a computer with a graphics card, it can support the AI application
for recognizing cats and dogs.

5.6.3 users use the resources and applications of running platforms

AI application of cat and dog image recognition on the running platform of the third
party.

B: is an application provider

C: is the resource provider of the running platform

D: users

B: Publishing the applications of cat

and dog identifications

C: Publishing running platform

resources

D: send AIT to the address of

the ADU deployed by C
D: Use AI applications

D: send AIT to the address of

the ADU deployed by B

Create a transaction tx: contains the ADU

unit to describe this resource

Create a transaction tx:

contains the AEU unit

Create a transaction tx:

contains the AEU unit

Create a transaction tx: contains the ADU

unit to describe this resource

Obtain data from the

resource server provided by B

(Not in the block chain)

give transaction fee to the miners

give transaction fee to the miners

AICHAIN

Upload cat and dog

pictures, use application

of this cat and dog

identification.

(not on the block chain)

AICHAIN
Yellowpaper

39

AIC
HAIN

B: Deploy the cat and dog identification (AI application information)to the block chain
and provide the downloading of data in the AI application executable file .

D: he user does not have the right computer to run AI applications for cat dog identifica-
tion. You need to borrow the platform provided by C. You need to transfer to the address of
the running resource ADU provided by C.

C: allocate resources on a running platform of AI applications for a video card server to D.

D: Transfer AIT to the address of the ADU unit of the cat dog identification application.

D: D initiates and runs the AI application for cat/dog identification provided by B on the AI
application running platform assigned by C. Then you can upload pictures to be identified.

AICHAIN
Yellowpaper

40

AIC
HAIN

[1] http://www.coinwarz.com/
cryptocurrency/

[2]https://github.com/leocalm/Lyra/blob/
master/Lyra2/Lyra2ReferenceGuide.pdf

[3] https://bitcointalk.org/index.
php?topic=586407.0

[4] http://phoenixcoin.org/archive/
neoscrypt_v1.pdf

[5] https://en.bitcoin.it/wiki/
Category:History

[6] https://github.com/bitcoinbook/
bitcoinbook

[7] https://en.bitcoin.it/wiki/
Wallet_import_format

[8] https://en.bitcoin.it/wiki/
List_of_address_prefixes

[9] https://en.bitcoin.it/wiki/Transaction

[10] https://github.com/ethereum/wiki/
wiki/White-Paper

[11] https://en.bitcoin.it/wiki/
Pay_to_script_hash

[12] https://en.bitcoin.it/wiki/
Transaction#Pay-to-PubkeyHash

[13] https://github.com/bitcoin/bips/blob/
master/bip-0013.mediawiki

[14] https://en.bitcoin.it/wiki/
Multisignature

[15] https://docs.docker.com/engine/
userguide/eng-image/baseimages/

[16]https://docs.docker.com/engine/
userguide/eng-image/multistage-build/

[17] https://gist.github.com/
ericjang/959c03168c0bdfac1ca3

[18]https://github.com/tensorflow/
tensorflow/blob/master/tensorflow/tools/
docker/README.md

[19]https://github.com/tensorflow/
tensorflow/tree/master/tensorflow/tools/
docker

[20] https://hub.docker.com/r/bvlc/caffe/

[21] https://github.com/BVLC/caffe/tree/
master/docker

[22]http://tleyden.github.io/
blog/2014/10/25/running-caffe-on-aws-
gpu-instance-via-docker/

[23] https://en.wikipedia.org/wiki/
Elliptic-curve_cryptography

 Reference

