
Introduction	 2

Mechanics of the Tangle	 4

Initial File Storage on the Tangle	 4

Burying Pearls with Broker Nodes	 6

Treasure Hunting for Oyster Pearls	 8

Web Node and Broker Node Collaboration	 10

Web Node to Web Node Interaction	 12

Content Consumption Entitlement	 14

Oyster Pearl Token Functionality	 15

File Verification and Retrieval	 15

Distributed Reputation System	 17

Conclusion	 18

oyster.ws/discuss Page � of �1 18

Oyster Whitepaper Rev. 0.7b

September 2017

Bruno Block

bruno@oyster.ws

oyster.ws

mailto:brunoblock@oyster.ws
https://oyster.ws
mailto:brunoblock@oyster.ws
https://oyster.ws
https://oyster.ws/discuss

The Oyster Protocol enables websites to silently generate traffic revenue as visitors perform
Proof of Work for a decentralized storage ledger.

Introduction

Despite the exponential growth of the internet, mechanisms for monetizing web content have
remained stagnant. Advertisements intrude on privacy, distract from the intended content, and
break design continuity in websites. Due to a general disregard and negative sentiment
towards online advertisements, ad blockers have become mainstream. They have become so
mainstream that content publishers are pushing back by blocking and limiting viewers from
content if ad blockers are detected. Publishers are losing either a large amount of money from
ad blockers, or a large amount of viewers from ad block retaliation mechanisms. Therefore the
entire advertising scene gradually morphed into an ineffective, inefficient and intrusive ordeal
without foresight and wholistic solution deployment.

In parallel, there is currently no storage service that is both convenient and private. If you
choose convenience, then you are opting for a standard cloud storage company which
precludes privacy and anonymity. Closed source software means you can never truly take what
they say for granted. If you choose privacy, then you will seldom find an accessible and straight
forward web interface with a simple ‘upload’ button.

The Oyster Protocol is a true two-birds-one-stone proposition. The Protocol introduces a
radically different approach to getting content publishers and content consumers to reach
equilibrium and cooperation. As a consequence, anyone with a web browser can store and
retrieve files in a decentralized, anonymous, secure, and reliable manner.

The following is a list of all the parties that make up the Oyster Ecosystem:

Storage User - A user that spends Oyster Pearls to upload a file

Responsibilities

• Pay the correct amount of Oyster Pearls to two Broker Nodes.

• Despite automation, has final discretion in choosing which two Broker Nodes to use.

• Encrypt and split file locally in browser, then send parts to chosen Broker Nodes.

• Verify the integrity of the Data Map installed by Broker Nodes.

• Share Broker Node contracts via the Distributed Reputation System.

• Securely store the Oyster Handle to retrieve the file from the Tangle at a later time. 

Reward

• Their file is securely, reliably, and anonymously stored.

Website Owner - An organization or individual that runs a website

Responsibilities

• Provide content/goods/services to Web Nodes.

• Add the Oyster Protocol script to their website HTML. 

Reward

• Get paid in Oyster Pearls that have been discovered by Web Nodes.

oyster.ws/discuss Page � of �2 18

https://oyster.ws/discuss

Web Node - A web browser that is visiting a web site

Responsibilities

• Search through Treasure Maps via Proof of Work to discover embedded Oyster Pearls.

• Submit discovered Treasure to a Broker Node for claiming on behalf of Website Owner.

• Perform Proof of Work for Broker Nodes to get Web Node identities and new Treasure Maps.

• Perform Proof of Work for Web Nodes to get Web Node identities and old Treasure Maps.

• Send Web Node identities and old Treasure Maps to Web Nodes that have performed the

adequate Proof of Work.

• Share Broker Node contracts via the Distributed Reputation System. 

Reward

• Granted access to content/goods/services from the corresponding Website Owner.

• Pass on Proof of Work burden to other Web Nodes where applicable.

Broker Node - A network device with access to the Tangle and Blockchain

Responsibilities

• Maintain connectivity to the Tangle via mutual neighboring Nodes.

• Provide Web Nodes and Storage Users with access to the Tangle.

• Perform Proof of Work for new file uploads where applicable.

• Submit the Storage User's Pearls to a buried state in the Blockchain Contract.

• Unlock discovered treasure for which the Proof of Work has been correctly performed.

• Maintain a positive balance of ETH to unlock discovered treasure.

• Build a reputation score on the Distributed Reputation System.

• Broker peer-to-peer connection initiations between Web Nodes.

• Send new Treasure Maps to Web Nodes that perform Proof of Work. 

Reward

• Earn Oyster Pearls by collecting leftovers from newly buried treasure.

• Earn Oyster Pearls by collecting fees from newly discovered treasure.

• Pass on Proof of Work burden to Web Nodes where applicable.

IOTA Tangle - A distributed ledger known as a Directed Acyclic Graph

Responsibilities

• Retain data for which the Proof of Work has been performed.

• Geographically distribute redundant copies of data.

• Load balance storage burden, such as with Swarm Intelligence. 

Reward

• Network experiences increased resistance against attack vectors.

• Faster average confirmation time for transactions.

Ethereum Blockchain - A distributed ledger with Smart Contract capabilities

 
Responsibilities

• Provide Smart Contract Framework that produces the properties inherent in Oyster Pearls (as

tokens). 

Reward

• Blockchain miners receive fees paid in ETH from the Broker Nodes.

oyster.ws/discuss Page � of �3 18

https://oyster.ws/discuss

Mechanics of the Tangle

The IOTA Tangle is a Directed Acyclic Graph, which means it is a blockless distributed ledger. A
live visualization of the IOTA Tangle can be seen here. Each submitted transaction must
perform Proof of Work for two prior transactions, therefore confirming them. These two
transactions are contextually referenced as the branch and trunk. See here for more details
concerning broadcasting a transaction to the Tangle. Each transaction has a payload capacity
which is used to retain the data that is uploaded by the Storage User. Transactions are
propagated throughout a mesh-net of Nodes that have mutually peered with each other, whilst
each Node retains a redundant copy of the transactions. This leads to a great redundancy of
data copies, therefore heavily mitigating the risk of data-loss whilst not relying on a centralized
hosting provider.

Tangle Nodes are designed so that they automatically delete old data once they reach
saturation of their physical storage limits (it is called Automatic Snapshots and it is not yet live
on the Tangle). This means that, eventually, transaction data is deleted from the Node.
Therefore Web Nodes perform Proof of Work to re-attach the transaction data to the Tangle as
they search for embedded Oyster Pearls. This ensures that the data is maintained across the
topology of the Tangle Nodes and never becomes irrevocably deleted.

The IOTA Tangle contains many innovations in it's roadmap, specifically Swarm Intelligence.
Swarm Intelligence is relevant to the Oyster Protocol because it removes the bottleneck of
each Tangle Node being required to maintain the entire ledger. It is similar to transitioning from
a RAID 1 drive array setup to a RAID 10 setup. Implementation of Swarm Intelligence further
strengthens the scalability merits of the Oyster Protocol.

Network bandwidth is the most scarce resource concerning reliably committing data across the
Tangle. A Tangle Node is inherently restricted by it's network interface bandwidth. Since the
Oyster Protocol aims to commit data more reliably to the Tangle, bandwidth access to the
Tangle is rewarded with a share of the processed Oyster Pearls. Tangle Nodes that adhere to
the Oyster Protocol specifications are called Broker Nodes. Broker Nodes act as a bridge from
the Tangle to Web Nodes and Storage Users.

Data is stored on the Tangle in ~1 KB parts within the transaction payload. A SHA256 hash is
the referenced basis for storing and retrieving data on the Tangle. When a SHA256 hash has
been selected to represent data, it is converted into it's trinary form to represent the recipient
address of the transaction. To retrieve the data from the Tangle the hash is again converted into
it's trinary form to produce the recipient address, and then all of the transactions under the
address are recovered. The transaction with the oldest issuance timestamp contains the
payload data that represents the selected hash.

Initial File Storage on the Tangle

When a Storage User wants to upload a file via the Oyster Protocol, the file is split into parts
and encrypted locally in the browser. This isolation ensures the impossibility of a malicious
actor retrieving the data since it can only be accessed with the corresponding encryption key,
which is known as the Oyster Handle.

The first 8 characters of the Oyster Handle represents the name of the file. This is usually
copied from the filename that was uploaded to the browser, but can also be customized by the
Storage User for their own references. The Primordial Hash is a 64 character long SHA256
hash of random input that is generated from within the Storage User's browser with as much
entropy as possible.

oyster.ws/discuss Page � of �4 18

http://iota.org/
https://en.wikipedia.org/wiki/Directed_acyclic_graph
http://iota.dance/live/
https://learn.iota.org/faq/what-is-needed-to-make-a-transaction
https://blog.iota.org/iota-development-roadmap-74741f37ed01
https://en.wikipedia.org/wiki/Entropy_(computing)
https://oyster.ws/discuss

The last 8 characters of the Handle is the cryptographic salt that differentiates the Primordial
Hash from the overall encryption key. The salt is used to further protect the data in case the
Primordial Hash is found because of a future weakness in a hash function or a rainbow table
attack on the Genesis Hash. Therefore the entire 80 character long Handle is the entire
encryption key used to encrypt and decrypt the split parts of the data. The Oyster Protocol
also supports adding a passphrase to the encryption scheme. The Primordial Hash initiates a
sequence of SHA256 hashes that represents split parts of the data. The data is first split in ~1
KB parts, then each part is individually encrypted with the entire Handle as the key. Each part
is sequentially represented by a Hash iteration (Genesis, N1, N2 etc.), and is eventually
submitted as a Tangle transaction each by two Broker Nodes.

The Distributed Reputation System amongst Web Nodes and Storage Users tracks the best
performing Broker Nodes, therefore automatically selecting the most appropriate two Broker
Nodes on behalf of the Storage User. The selection of exactly two Broker Nodes is stipulated
by the Oyster Protocol so as to induce a competitive race between the two for which Broker
Node can install the most Pearls into the Data Map. The better performing Broker Node
receives less Pearls for the specific session, yet gains more reputation and hence Pearl
revenue in the future.

oyster.ws/discuss Page � of �5 18

https://oyster.ws/discuss
https://en.wikipedia.org/wiki/Salt_(cryptography)
https://en.wikipedia.org/wiki/Rainbow_table

The value of the Genesis Hash is submitted to both Broker Nodes by the Storage User. One
Broker Node is designated to commit the Data Map working downwards from the Genesis
Hash (Alpha Node), whilst the other (Beta Node) is designated to commit the Data Map
upwards from the NX Hash (X represents the last iteration of the sequence). The correct
amount of Oyster Pearls are sent to the Alpha-designated Broker Node. The Alpha Node is
sent the full Pearl amount and the Ethereum address of the Beta Node. The Alpha Node sends
half of the Pearls to the Beta Node when it receives them along with a cryptographically signed
statement that reveals it's identity. Any defections by either Node will be reported via the
Distributed Reputation System, which would exponentially degrade their reputation to Web
Nodes and Storage Users across the Oyster Network. The amount of Pearls which the Storage
User pays is half of the amount that gets eventually embedded in the Data Map. Broker Nodes
are allowed to keep any leftover Pearls after the Data Map has been correctly installed.

By default, the selected Broker Nodes are responsible for performing the Proof of Work to
attach each data part to the Tangle. The Tangle address used to send the transaction is the
trinary form of the corresponding Hash iteration (Genesis, N1, N2 etc.) of the sequence.
However, Broker Nodes are able to delegate the Proof of Work tasks to Web Nodes if there is
sufficient demand for peer-to-peer connection brokerage and new Genesis Hashes.

To understand how the increase in overall Proof of Work being performed across the Tangle
lowers transaction confirmation times and increases the general security of the network, more
information can be found here.

Burying Pearls with Broker Nodes

Oyster Pearls are designed to be embedded within the Data Map that defines the structure and
contents of the uploaded file. Instead of Storage Users embedding the Pearls into the Data
Map themselves, Broker Nodes have been allocated this task for several reasons:

• Broker Nodes have access to ETH balances, and therefore can pay the Gas fees needed to
move all the Pearls into the correct designations. Every X GB worth of user data requires a
transaction on the Ethereum Blockchain. 

• It would be impractically complicated for the Storage User to have to perform a large amount
of complex Blockchain transactions, which includes invoking custom Smart Contract
functions. When this complexity is passed onto Broker Nodes, the Storage User need only
send the Pearls once to the Alpha-designated Broker Node via a typical Ethereum Wallet. 

• Having Broker Nodes embed the Pearls in the Data Map heavily mitigates the red herring
attack vector.

A red herring attack is when a malicious Storage User pretends to embed Pearls into the Data
Map but does not actually embed them. If they were to upload garbage data without any
Pearls in it, it would waste the time of Web Nodes that are searching for treasure (that doesn't
exist). Eventually the Web Nodes would realize that the Data Map is not within the bounds of
the Oyster Protocol specification, but by then the energy spent by the Web Nodes is expected
to be greater than the energy put in by the malicious attacker. Therefore this would cause the
attack to be successful and potentially profitable. However, because Web Nodes rely on Broker
Nodes to receive Genesis Hashes (which define the entire Data Map), red herring attacks are
heavily mitigated. This is because if a Broker Node began to give out Genesis Hashes that
represented an invalid Data Map (that doesn't have the correct amount of Pearls in the correct
places) it would be easy for Web Nodes to report the Broker Node and therefore ruin it's
reputation and future traffic. Whilst Broker Nodes have consistent identities that have

oyster.ws/discuss Page � of �6 18

http://iotasupport.com/whatisiota.shtml
https://ethereum.stackexchange.com/questions/3/what-is-meant-by-the-term-gas
https://oyster.ws/discuss

associated reputation scores, Storage Users and Web Nodes are much more dynamic. Not
only is it already difficult to establish consistent cryptographic identities for Web Nodes and
Storage Users, but the Oyster Protocol defines that Web Nodes need to reset their identities
every X amount of treasure hunts. Storage Users do not have a discernible identity except on a
session basis to negotiate with Broker Nodes.

Once a Storage User submits Pearls for payments, approximately half are embedded in the
Data Map and the other half are collected as compensation by the two Broker Nodes. The two
Broker Nodes installing the Data Map can be likened to a candle that burns on both ends.

The candle wax represents the Data
Map and the two flames each
represent a Broker Node. A Broker
Node has the right to retain any
leftover Pearls remaining after the Data
Map has been completely installed (or
the candle completely burns out). The
default economic pressures would
indicate that it is advantageous for a
Broker Node to install the Data Map
(burn one side of the candle) very slowly or not at all. If the Alpha Node burns the candle at 10
units per second, and the Beta Node burns the candle at 2 units per second, they will still
eventually meet at some stage but the Beta Node will have a lot more leftover Pearls, which it
is entitled to keep. The logical extension of this economic situation is that both Nodes would
not burn the candle at all, both trying to keep the most Pearls for themselves.

The Distributed Reputation System inverses the economic incentives. Broker Nodes are
assigned cryptographic identities which initially debut with a score of zero, the lowest possible.
Web Nodes and Storage Users seek to perform transactions with the Broker Nodes that have
the highest available reputation scores (whilst also factoring in latency and other selection
restrictions). As the average candle burning speed of a Node increases linearly, it's reputation
score increases exponentially. This causes Broker Nodes to race in burning more of the candle
themselves, despite there being less Pearl revenue in the short term. A Broker Node that
intends to burn the candle as quickly as possible will earn less in the short term whilst earning
exponentially more in the long term. Therefore the economic incentive for a Broker Node to
defect has been nullified.

When a Broker Node embeds Oyster Pearls into a Data Map, a special bury function of the
Oyster Contract is invoked. A Sector of a Data Map represents 1,000,000 hashes since the
chosen hash (Genesis - N999,999, N1,000,000 - N1,999,999 etc). Therefore a Sector holds X
GB of user data. Each Sector must have at least one embedded treasure of Pearls inside,
whilst it is possible that sometimes a Sector will contain two due to non-perfect calibration
between both Broker Nodes. The location of the Pearls within the Sectors is randomly chosen
by both Broker Nodes. Therefore the amount of Pearls per Sector defines how long the file
should be retained in the Tangle. 1 PRL will ensure X GB is maintained on the Tangle for 1 year.
Therefore the Oyster Contract locks up the Pearls for the duration of the intended storage time.
During this time, Web Nodes perform Proof of Work to find the embedded Pearls.

Pearls must already be in a buried state before they can be claimed by a Web Node. Pearls are
also claimed in separate time zones named Epochs. The Oyster Protocol defines an Epoch as
being 1 year long in duration. This means that if there is a Sector of the Data Map that contains
treasure of 2 PRL (4 years storage time), then there are 4 available Epochs: year 1, year 2, year
3 and year 4. The Oyster Contract allows exactly 0.5 PRL to be claimed per Epoch. Web Nodes
claim Pearls on behalf of the Website Owner that invoked them.

oyster.ws/discuss Page � of �7 18

https://oyster.ws/discuss

Treasure Hunting for Oyster Pearls

Web Nodes search through Sectors of Data Maps to find embedded Oyster Pearls. A Data
Map is defined by a single SHA256 hash known as the Genesis Hash. Web Nodes get Genesis
Hashes from Broker Nodes and other Web Nodes. Genesis Hashes don't come for free, a Web
Node must perform specific Proof of Work tasks that are defined by the Counterparty Node.
The Proof of Work task is defined by quoting two unconfirmed transactions from the Tangle,
one that is the designated branch and the other that is the designated trunk. Once the Proof of
Work has been completed, the Web Node responds to the Counterparty Node with the identity
of the transaction it just submitted. The Counterparty Node then checks the Tangle to verify
that the quoted transaction matches the previously specified branch and trunk identities, and
also that the transaction references the data that was meant to have Proof of Work performed
on it. Once the Counterparty Node verifies the Proof of Work was performed, the Genesis Hash
is sent in exchange.

To search for treasure, Web Nodes select a random Sector of the Data Map that is derived from
the newly earned Genesis Hash. The Web Node then checks to see if Proof of Work was
performed by another Web Node within the current Epoch by referencing the Tangle. If the
Proof of Work was performed, then the Web Node abandons the Sector and tries again at
another Sector. This is because even if the Web Node were to find the treasure of that Sector, it
is highly likely that another Web Node already claimed the Pearls for the Epoch at the Oyster
Contract. If Proof of Work was not performed during the current Epoch, then the Web Node
scrolls through each consecutive hash of that Sector. For example: if Sector 5 was chosen, the
Web Node scrolls through Hashes N5,000,000 to N5,999,999, which represents X GB of data
of the uploaded file. Over time, new Web Node strategies can be deployed which do not
conform to this behavior, such as bluffing Web Nodes. A Web Node bluffs when it performs
Proof of Work on a Sector that it does not expect to contain claimable treasure in the near
future. This way, other non-bluffing Web Nodes are prevented from accessing it, which causes
the Sector to become exclusively available to the bluffing Web Node. Therefore the bluffing
Web Node hopes to keep the Sector exclusively for themselves until the next Epoch becomes
available. The game theory mechanics concerning Web Node interactions can become much
more complex and advanced as more sophisticated strategies for effectively finding treasure
are produced and refined, therefore producing a Prisoner’s Dilemma.

For each hash that is encountered,
the Web Node first performs the Proof
of Work on the Tangle for the
corresponding transaction, which
utilizes the GPU of the device (using
WebGL2). Thereafter, the Web Node
retrieves the ~1 KB payload of the
corresponding Transaction and
calculates the SHA512 hash of the current SHA256 hash. The Web Node then attempts to
unlock the payload using the SHA512 hash as the decryption key. If it unlocks, then this means
it is treasure that contains Pearls. If it does not unlock, then the SHA512 hash of the current
SHA512 is calculated, therefore scrolling through to the next link in the sequence known as the
hashchain. If the Web Node reaches the upper limit of the hashchain size defined by the Oyster
Protocol, it moves on to the next SHA256 hash in the Data Map and repeats the process.

The Oyster Protocol defines that treasure must exist at least once per Sector. If no treasure
was found in an entire Sector, then the Data Map is declared invalid and participants of the
Distributed Reputation System are warned. This would lead to the degrading of the reputation

oyster.ws/discuss Page � of �8 18

https://oyster.ws/discuss
https://en.wikipedia.org/wiki/Prisoner's_dilemma
https://www.khronos.org/registry/webgl/specs/latest/2.0/

of the Broker Node that initially introduced the Genesis Hash for that invalid Data Map. It could
take days for a Web Node to scroll through a single SHA512 hashchain, and therefore many
months for an entire Sector. This prevents Web Nodes from consuming large amounts of data
in sudden spikes, as the X GB data consumption would be spread out over those months (< 5
MB per day). Therefore Web Nodes do not undertake bandwidth intensive tasks so as to
prevent burdening limited/expensive data connection plans. Performing the SHA256, SHA512,
and decryption functions all use CPU instructions. This means that a Web Node can perform
Proof of Work negotiations with other Web Nodes and Broker Nodes via the GPU, whilst
simultaneously searching for treasure in the Sector of a Data Map via the CPU.

Pearls are embedded in the Data Map by including the private seed key of the Ethereum
address that holds the Pearls. Therefore when a Web Node discovers treasure, it stores and
guards the private seed key via the HTML5 localstorage directive. Despite the discovered
treasure, the Web Node faces two major dilemmas:

• The Web Node does not have direct access to the Ethereum Blockchain, and would find
difficulty in invoking complex Contract functions. 

• The Ethereum address contains Pearls but no ETH for Gas. Therefore ETH must first be sent
to the address from somewhere else to allow the private seed key to generate a transaction
that will be accepted by the Ethereum miners.

Because of these two dilemmas, the Oyster Protocol defines that a Web Node collaborates
with a Broker Node to unlock the treasure. The Web Node securely sends over the private seed
key, and the Broker Node checks that there are indeed Pearls inside. Once the presence of the
Pearls are confirmed, the Broker Node sends a very small amount of ETH to the address to
function as Gas for the transaction. Then the Broker Node submits the transaction to the
Blockchain. The transaction invokes the claim function of the Oyster Contract to claim the
Pearls to the Ethereum address of the Website Owner that corresponds with the Web Node
that discovered the treasure. However there are two immediate concerns:

• The Web Node is concerned that the Broker Node will not claim the Pearls with the Ethereum
address of the corresponding Website Owner, therefore stealing the Pearls. 

• The Broker Node needs to send ETH to the address that is derived from the private seed key
to fuel the transaction, which the Web Node claims contains treasure. It could be a malicious
actor pretending to be a Web Node who wants to trick the Broker Node into sending a small
amount of ETH to an address that he controls. As soon as the Broker Node would send the
ETH, the malicious actor steals a marginal amount after the minimum Gas payment is made.
The profit margin may be very small, but it could be repeated indefinitely to cause significant
financial losses for the Broker Node.

To solve the concern of the Web Node, the Distributed Reputation System would quickly
degrade the reputation of the Broker Node. Broker Nodes have consistent cryptographic
identities upon which they build reputation and use to convince Web Nodes and Storage Users
to use them for services. Web Nodes will seek to unlock discovered treasure with only the most
reputable of Broker Nodes. If a Broker Node were to steal the Pearls of a single Epoch, within a
single Sector, within a single Data Map, it would cause much more damage than profit. The
Broker Node would conceivably lose thousands of dollars worth of potential future revenue in
exchange for a fraction of a dollar. Therefore the Web Node has confidence in dealing with
reputable Broker Nodes.

To solve the concern of the Broker Node, the Broker Node does not accept the request of a
third party to unlock treasure until it verifies that the Proof of Work for the entire Sector was

oyster.ws/discuss Page � of �9 18

https://www.w3schools.com/html/html5_webstorage.asp
https://oyster.ws/discuss

recently completed on the Tangle. This means that the malicious actor would have to perform
Proof of Work on the entire Sector before convincing a Broker Node to unlock it’s treasure. To
illustrate the futility of the attack vector; in order for a malicious actor to make a profit of 1 cent
they would have to spend $5 worth of electricity in completing Proof of Work puzzles.
Therefore if a Broker Node witnesses that the Proof of Work has been completed for the Sector
from which the claimed treasure originates, it becomes economically viable for it to send ETH
to the treasure address to fuel the Oyster Contract claim function.

Web Node and Broker Node Collaboration

One of the major interactions that occurs within the Oyster Ecosystem are Web Nodes that
perform a lot of Proof of Work as payments towards a purchase of information from other Web
Nodes and Broker Nodes. Therefore Web Nodes need consistent access to the Tangle in order
to operate correctly. Whilst it is technically possible that one day Web Nodes will be able to
access the Tangle directly, current library implementations and hardware/bandwidth limitations
restrict Web Nodes to being light clients of the Tangle network. This means they need need an
intermediary light client host to serve Tangle requests and submissions. Tangle light client
hosts already exist independently of Broker Nodes, but the vast majority of them cannot be
used by Web Nodes because they don't serve the requests via SSL. The Oyster Protocol
requires that Broker Nodes serve all Tangle requests via SSL. This is due to the expectation
that most of the websites that will run the Oyster Protocol will be hosted via SSL, therefore the
Web Node operation logic must be loaded via SSL and any outgoing or incoming
communications must be via SSL.

Broker Nodes also enable Web Nodes to interact with other Web Nodes directly in a peer-to-
peer connection. The PeerJS Library is used which relies on the WebRTC Standard. Therefore
a Broker Node runs the PeerJS server software to enable Web Nodes to communicate directly
to each other.

Web Nodes are constantly in demand for Genesis hashes, especially new ones, due to the
implications that the embedded Oyster Pearls of the first Epoch are unclaimed. Once a Broker
Node concludes a file upload session with a Storage User, the Broker Node retains the Genesis
Hashes. When the Oyster Network is in a typical state of equilibrium; Broker Nodes always
retain an excess supply of new Genesis Hashes, whilst Web Nodes are in a constant state of
excess demand for Genesis Hashes.

Instead of freely giving away new Genesis Hashes, Broker Nodes stipulate a large amount of
Proof of Work that must be performed in exchange. This is primarily done to prevent malicious
actors from easily attaining Genesis Hashes and retrieving the embedded treasure. Therefore
the added Proof of Work burden makes it even more uneconomical for malicious actors to seek
Genesis Hashes from Broker Nodes. The Proof of Work requirement also removes reliance on
altruistic behavior, which the Oyster Protocol avoids.

The Proof of Work tasks that the Broker Node burdens the Web Nodes with are the same tasks
that the Storage User burdened the Broker Node with. Therefore if the equilibrium of the Oyster
Network were to be perfectly saturated, Broker Nodes would never perform Proof of Work as
the tasks would get constantly offset to Web Nodes. The exchange sequence that occurs
between Web Nodes and Broker Nodes is the same as the one that occurs between Web
Nodes themselves. The Exchange Sequence is as follows:

• A Web Node asks the Broker Node if they have new Genesis Hashes or reliable Neighbor
identities available (only one information type is requested per sequence). 

oyster.ws/discuss Page � of �10 18

https://oyster.ws/discuss
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://peerjs.com
https://webrtc.org

• The Broker Node responds, and in this case indicates that there is availability. The Broker
Node also indicates the requested Proof of Work burden magnitude. Burden magnitude
fluctuates according to the state of the Oyster Network economy due to supply/demand
constraints. 

• If the Web Node agrees with the Proof of Work burden magnitude, then it responds with
acceptance of the job. 

• The Broker Node sends three references of three transactions on the Tangle. One transaction
contains the relevant Storage User data which was formerly a burden to the Broker Node.
The last two are unconfirmed transactions that are recommended for confirmation by the
IOTA Algorithm. They are each specified for becoming the branch and trunk transactions. 

• The Web Node performs the replayBundle function on the Tangle, therefore manually setting
the branch and trunk of the transaction exactly as specified by the Broker Node. 

• Once the Web Node completes the Proof of Work and the entire Tangle transaction is
submitted, it sends the identity of the newly submitted transaction to the Broker Node. 

• The Broker Node verifies that the quoted transaction identity represents the correct data on
the live Tangle, and has the correct branch and trunk allocations that were specified earlier. 

• If there is more Proof of Work to be completed to satisfy the agreed upon burden magnitude,
then it is also completed as described above. 

• Once the agreed upon burden magnitude has been satisfied, the Broker Node delivers the
Genesis Hash or Neighbor identity to the Web Node in exchange. The Broker Node is
pressured to deliver the agreed upon information by the Distributed Reputation System.

Overtime, Genesis Hashes migrate from Broker Nodes to the collective consciousness of Web
Nodes. Web Nodes will only intentionally forget of a Genesis Hash if all of the Epochs of all of
the Sectors have already been claimed. This would indicate data is intended to expire, and
therefore no longer guaranteed by Proof of Work exhibitions, unless the Storage User were to
add more Pearls to the treasure thereby extending the guaranteed lifespan of the data. Web
Nodes use the HTML5 localstorage directive to retain data, including Genesis Hashes that are
known by them. If the space afforded by the localstorage directive were to be saturated, the
Web Node would begin pruning the data by deleting Genesis Hashes that have the smallest
prospects for being profitable to the Website Owner.

The migration of Genesis Hashes from Broker Nodes to Web Nodes is vital. When an upload
session is completed with the Storage User, the Genesis Hashes exist momentarily in only both
Broker Nodes of the session. The positive consequence of Web Nodes seeking Genesis
Hashes is that it secures the existence of the Genesis Hashes amongst the Oyster Network,
therefore removing the initial risk that exists when Broker Nodes exclusively hold the Genesis
Hashes. If a Genesis Hash were to be forgotten by the collective consciousness of the Oyster
Network, it would be no longer maintained with Proof of Work. Therefore the Tangle would no
longer be responsible for retaining the data for an extended period of time within it's Node
topology.

oyster.ws/discuss Page � of �11 18

https://oyster.ws/discuss
https://github.com/iotaledger/iri
http://dev.iota.org/javascript-library/%23replaybundle
https://www.w3schools.com/html/html5_webstorage.asp

Web Node to Web Node Interaction

Web Nodes perform peer-to-peer interactions with each other due to the demand/supply
constraint motivations that exist within the Oyster Network economy. Peer-to-peer connections
are made via the PeerJS Library which relies on the WebRTC Standard. For Web Nodes to be
able to communicate with each other, they need to be able to identify each other across the
Oyster Network. Therefore each Web Node adopts for itself a cryptographic pseudo-persistent
identity. This means that identities are meant to be reliable and consistent until a Web Node
reaches a stage in it's treasure seeking career when it needs to wipe away it's memory and
start from scratch; as if it were recently introduced to the Oyster Network. This is done to
induce dynamic turnover cycles within the Web Node topology of the Network. If Web Nodes
were to indefinitely persist in communicating with the same Neighbors, the Network would
become too static and unresponsive to environment changes. As long as the majority of Web
Nodes follow the Oyster Protocol stipulation of identity refreshing, it will compel the minority to
not expect Neighbor relations to persist for an extended period of time.

When a Web Node is either first introduced to the Oyster Network or has recently reset it's
identity, it has no Neighbors and must therefore build a list of Neighbors. The Web Node is
therefore faced with a Catch 22 dilemma. Neighbor identities are shared by other Web Nodes,
but it cannot ask because it doesn't known anyone initially. The initial solutions seems to be to
ask a Broker Node, but even Broker Node identities are shared via the Distributed Reputation
System that Web Nodes participate in. Therefore Web Nodes assume an initial trusted Broker
Node as a default reference. Website Owners are able to change their defaults to which ever
Broker Nodes they consider to be trustworthy, therefore maintaining the Network's compliance
with decentralization principles.

Broker Nodes are used to broker the initial connections between Web Nodes that already know
each other's identities. Therefore a Broker Node retains a list of recently active Web Nodes and
their identities. A new Web Node will purchase these identities from Broker Nodes in exchange
for performing Proof of Work as defined in the Exchange Sequence. A new Web Node keeps
purchasing identities from Broker Nodes, whilst also purchasing identities from other Web
Nodes that it has just formed new relations with. Therefore the Neighbor list of the new Web
Node expands exponentially until it reaches a saturation point of pursuit due to the principle of
diminishing returns. A Web Node is discouraged from pursuing too many neighbors because
the energy spent on Neighbor-seeking (via Proof of Work) could have been used to purchase
Genesis Hashes and seek treasure. Since the Neighbor list has expanded, the Web Node can
now sufficiently receive reputation statements from the Distributed Reputation System.
Therefore the Web Node is able to communicate with new Broker Nodes and also keep the
original default Broker Nodes in check. Because Web Node identities reset periodically, Web
Nodes are compelled to consistently yet gradually seek new Neighbors.

A Web Node can perform the Exchange Sequence with both other Web Nodes and Broker
Nodes. This allows the Web Node to perform Proof of Work in exchange for valuable
information such as Genesis Hashes or Neighbor identities. The Exchange Sequence is
described as the following:

• A Web Node asks the Neighbor if they have new Genesis Hashes or Neighbor identities
available (only one information type is requested per sequence). 

• The Neighbor responds, and in this case indicates that there is availability. The Neighbor also
indicates the requested Proof of Work burden magnitude. Burden magnitude fluctuates
according to the state of the Oyster Network economy due to supply/demand constraints. 

oyster.ws/discuss Page � of �12 18

https://oyster.ws/discuss
http://peerjs.com
https://webrtc.org
https://en.wikipedia.org/wiki/Catch-22_(logic)

• If the Web Node agrees with the Proof of Work burden magnitude, then it responds with
acceptance of the job. 

• The Neighbor sends three references to three transactions on the Tangle. One transaction
contains the relevant Storage User data which was formerly a burden to the Neighbor. The
last two are unconfirmed transactions that are recommended for confirmation by the IOTA
Algorithm. They are each specified for becoming the branch and trunk transactions. 

• The Web Node performs the replayBundle function on the Tangle, therefore manually setting
the branch and trunk of the transaction exactly as specified by the Neighbor. 

• Once the Web Node completes the Proof of Work and the entire Tangle transaction is
submitted, it sends the identity of the newly submitted transaction to the Neighbor. 

• The Neighbor verifies that the quoted transaction identity represents the correct data on the
live Tangle, and has the correct branch and trunk allocations that were specified earlier. 

• If there is more Proof of Work to be completed to satisfy the agreed upon burden magnitude,
then it is also completed as described above.  

• Once the agreed upon burden magnitude has been satisfied, the Neighbor delivers the
Genesis Hash or Neighbor identity to the Web Node in exchange.

Typically, burden magnitudes for Genesis Hashes from Broker Nodes are greater than if they
were from other Web Nodes. This is because Broker Nodes hold relatively new Genesis
Hashes, whilst Web Nodes hold relatively older Genesis Hashes. The going rate for a new
Genesis Hash is expected to be higher because there is a greater expectation of unclaimed
treasure. This also implies that Web Nodes ask Broker Nodes for Genesis Hashes before they
ask other Web Nodes. This ensures that Genesis Hashes from Broker Nodes are constantly,
effectively, and quickly migrating towards the collective consciousness of Web Nodes where
they are highly impervious to data loss.

When Web Nodes communicate with each other, they measure the connection latency for
consistent communication types. This means that, for all communications/transactions that
have a consistent size of payload exchange, the time between the connection initiation and
completion is measured. Therefore a Web Node will be able to deduce the approximate relative
distance of it's Neighbors. This connection latency information is retained so that, gradually
over time, a Web Node will favor nearby Neighbors over far away Neighbors. The result of this
behavior is that over time the Neighbor list of a Web Node will become optimized so that it
primarily communicates with Web Nodes that are nearby. The same optimization is applied for
a Web Node's Broker Node list, despite more credence being given to a Broker Node's
reputation rather than latency.

The fruits of the latency optimization is that the Oyster Network becomes a decentralized low-
latency mesh-net with efficient Node hop pathways upon which third party applications can be
built. For example, any small group of skilled programmers could write a decentralized
Javascript telephone service that extends the core Web Node Protocol logic and uses it's own
Ethereum Token. Therefore the extension can be published as open source code and shared
within the Oyster Community. Therefore the Website Owners can add the extension in pursuit
of the extra revenue afforded by the telephone service sub-economy. This further enables the
monetization of the web for creative content publishers, therefore accomplishing the Oyster
Protocol's goal. The phone call mechanism would simply run on top of the API calls that the
Web Nodes provides, thereby sending audio packets efficiently across the Oyster Network
topology to the desired recipient. Therefore the Oyster Protocol is designed as an Extension

oyster.ws/discuss Page � of �13 18

http://dev.iota.org/javascript-library/%23replaybundle
https://oyster.ws/discuss

Platform that becomes the bedrock for decentralized code development and deployment by
providing optimized mesh-net Node topology and automated Node Hop Logic interaction via a
simple API.

Content Consumption Entitlement

The basic social contract of the internet is an exchange of information. Website Owners make
investments to produce/obtain/deliver original content and/or services. They must also bear
the burden of hosting costs. There must be an economic bridge to justify the investments
made by the Website Owner; as there is no such thing as a free lunch.

Whilst in need of this economic bridge, the internet as a whole has resorted to the mediocre
solution of advertisement exchanges. Advertisements are consistently distracting, tangential,
privacy-invasive, and break the design continuity of websites everywhere. Therefore
advertisements have produced unanimous disdain throughout the greater internet community.
In due response, ad blockers have become mainstream to the detriment of the internet
economy. Therefore creative content publishers are left stranded, as they still need to justify the
costs of producing and hosting content. Overtime, creative content publishers are left at the
mercy of the policies, decisions and whims of the centralized advertisement exchanges.

The Oyster Protocol is a radical new departure from the old advertisement paradigm, which
allows creative content publishers to gain full autonomy over the monetization of their content.
Visitors are able to pay the price of admission whilst not being burdened by off-putting and
tangential distractions. As money flows back to the already suffering creative content
publishers, content quantity and quality can cease receding and increase once again. This, in
turn, entices visitors to continue visiting and spending their computational resources via the
Oyster Protocol.

The Oyster Protocol is very simple for Website Owners to enable. They need only add a single
line of code to their website HTML to fully enable the Oyster Protocol and receive automatic
payments in Pearls, like so:

<script id="o.ws" data-payout=“ETH_ADDRESS”
src=“https://oyster.ws/webnode.js"></script>

The Oyster Protocol is also very simple for visitors to disable, should they not consent to spend
their computational resources in exchange. In such a case, a blocking flag would be installed at
the HTML5 localstorage area of the disabled Web Node. The visitor's device would then not
perform any Proof of Work or treasure hunting tasks, but a javascript flag would be enabled on
the Website Owner's site to mark the abstention. Therefore a Website Owner can opt to easily
block sending out content to anyone who doesn't consent to work for them to find treasure.

Because Web Nodes use the HTML5 localstorage directive to retain data, they retain the same
identity and work queue whilst being invoked by different Website Owners. Once a treasure
hunting session has been initiated, the Web Node permanently associates the Ethereum
address of the invoking Website Owner as the claimant.

For example: a person is browsing four of their favorite websites on their laptop, two of which
have the Oyster Protocol enabled. When the Oyster enabled website A is visited, the visitor's
laptop will become a Web Node and attribute any active treasure hunts to the Website Owner
of website A. Therefore, any discovered Pearls would be claimed in the Oyster Contract under
the Ethereum address of Website A. Thereafter the person visits the Oyster Protocol enabled
website B. The laptop still operates as a Web Node and retains the same cryptographic

oyster.ws/discuss Page � of �14 18

https://oyster.ws/discuss
https://en.wikipedia.org/wiki/There_ain't_no_such_thing_as_a_free_lunch
https://www.w3schools.com/html/html5_webstorage.asp

identity, collection of Genesis Hashes, identities of other Web Nodes and Broker Nodes, as well
as any pending Data Maps that it is working on. If any new treasure hunts are initiated under
the jurisdiction of website B, then any discovered Pearls are attributed to the Website Owner of
website B.

Oyster Pearl Token Functionality

Because the Oyster Network is a fully decentralized system, it requires a trustless mechanism
to manage it's referenced value token; the Oyster Pearl. The Oyster Pearl is an ERC20-
compliant token on the Ethereum Blockchain that contains custom designed properties that
enable the functionality of the Oyster Protocol.

A custom function specific to the Pearl token is the bury function. Burying an Ethereum
address blocks Pearls from being withdrawn whilst still permitting deposits. Deposits to a
buried address are still enabled to allow Storage Users to potentially extend the lifespan of
their data to prevent intentional data expiration. Broker Nodes invoke the bury function of the
Oyster Contract when initially uploading a file to the Tangle. The Pearls that are embedded in
the Data Map by the Broker Node are withheld by the Oyster Contract and are therefore
unspendable.

As Web Nodes seek treasure they will encounter private seed keys of Ethereum addresses that
have had the bury function invoked on them, therefore locking the Pearls from being withdrawn
all at once. Therefore anyone who retrieves the private seed key, Web Node or not, will not be
able to withdraw any Pearls via the typical transfer function that is invoked on all ERC20-
compliant tokens. A Web Node must ask a Broker Node to invoke the claim function on behalf
of the Website Owner's Ethereum address. The claim function can only be invoked on an
Ethereum address that is in a buried state. The Oyster Contract calculates the Epochs for the
specified Sector, and allocates only an Epoch's worth of Pearls to the claimant. If two or more
Epochs worth of Pearls are unclaimed within a Sector, then the claimant is rewarded all of
them. The Oyster Contract doesn't need to factor in the metrics of Sectors, because each
embedded Ethereum address already represents exactly one Sector each.

The Broker Node invokes the claim function with the Ethereum address of the claimant Website
Owner which invoked the Web Node that discovered the treasure. The claim function also
defines a fee address variable. When the Broker Node invokes the claim function, it submits it's
own Ethereum address as the fee variable. Therefore the Oyster Contract automatically assigns
the due fee that the Broker Node has earned for unlocking the treasure. Therefore the fees
which Broker Nodes receive are unanimously agreed upon and auditable. Once the claim
function is executed, any claimable Pearls are directly sent to the Ethereum address of the
Website Owner, whilst an agreed upon percentage is reserved for the Broker Node as a
brokerage fee.

Therefore the Oyster Pearl is the essential medium of exchange that bridges the economic
motivations of Website Owners, Web Nodes, Broker Nodes, and Storage Users.

File Verification and Retrieval

To upload a file via the Oyster Protocol, the Storage User's client selects two Broker Nodes to
commit the data to the Tangle. The data is processed from the beginning and end of the file,
one Broker Node performing each, similar to a candle that burns on both ends. At some stage
the Broker Nodes will have met somewhere near the middle of the Data Map. However, in the
unlikely scenario that one of the Broker Nodes was defecting by not performing the Proof of
Work (and keeping the Oyster Pearls for themselves), the non-defecting Broker Node will have

oyster.ws/discuss Page � of �15 18

https://oyster.ws/discuss

completed the entire Data Map. The Storage User's client would have noted the defection and
cryptographically reported the defecting Node via the Distributed Reputation System.

Once the file has been fully committed to the Tangle, the client begins downloading the entire
Data Map in order to verify it's integrity. The client uses Broker Nodes other than the first two
(that performed the upload) to access the Tangle and download the Data Map. This verification
stage is technically skippable, but recommended so that in the very unlikely scenario that two
Broker Nodes conspired against the Storage User or both individually defected, the Storage
User's client would be able to cryptographically report the offenses via the Distributed
Reputation System. Honest Broker Nodes would then elect to perform the task that the
dishonest Broker Nodes didn't do, whilst not seeking any Pearl payments from the Oyster User.
Honest Broker Nodes seek to perform this act of data rectification because they would get a
large boost to their cryptographic reputation, which would in turn boost their prospects for
increased future revenue.

Whilst the verification process guards against dishonest Broker Nodes, it also guarantees that
there is no flaw in the Data Map due to a programming error or execution bug. The download
sequence that is used for both upload verifications and candid data retrievals is defined as
such:

• The client retrieves the Primordial Hash from the Oyster Handle and submits it as input to the
SHA256 function to produce the Genesis Hash. 

• The client calculates the trinary data of the selected hash of the SHA256 hashchain (Genesis
Hash for first iteration). 

• The client retrieves the payload data of the Tangle transaction that correlates with the trinary
data from the previous step. The retrieval is performed via a Broker Node that is selected
according to the Distributed Reputation System (which is used by Web Nodes and Storage
Users). If a verification process is occurring, the Broker Nodes used to access the Tangle
cannot be of the same Broker Nodes that performed the initial upload. 

• Once the payload data is retrieved, the client attempts to unlock it with the entire Oyster
Handle as the encryption key. The Oyster Protocol also allows for a passphrase to be used in
the encryption scheme, yet caution is advised due to the risk of the Storage User forgetting
the passphrase. If either the Oyster Handle or the optional passphrase are lost, then the file is
permanently lost. 

• If the payload data unlocks, then it is part of the data sequence that makes up the uploaded
file. If it does not unlock, then it is a reference to the SHA512 hashchain that contains the
embedded treasure. As the client progresses through the Data Map it checks that at least
one SHA512 hashchain reference exists per Sector (1,000,000 SHA256 hashes), or else it
declares the Data Map as invalid and performs the appropriate procedure with the
Distributed Reputation System. 

• Once the payload data of a single hash has been retrieved, it is stored on the Storage User's
persistent storage device and is freed from the corresponding memory usage allocation. 

• The client calculates the next iteration in the SHA256 hashchain, by submitting the current
SHA256 hash into the SHA256 function. The resultant hash is the next iteration of the
hashchain. (e.g. The N1 hash comes after the Genesis Hash). 

• The process repeats itself until the entire file has been retrieved from the Tangle. 

oyster.ws/discuss Page � of �16 18

https://oyster.ws/discuss

• The individual file parts are glued back together, and the entire contents are compared to the
embedded checksum to guarantee data integrity.

The Storage User is able to access their files through any client, even from Tangle Nodes that
are not Broker Nodes. The only two things that are needed to retrieve that data are the Oyster
Handle and generic access to the IOTA Tangle.

Distributed Reputation System

Broker Nodes are needed by Storage Users to bury Pearls, and by Web Nodes to claim them.
In both instances, valuable Pearls are sent to the Broker Node for processing. Therefore a
monitoring system is used by Storage Users and Web Nodes to keep the Broker Nodes in
check. This system is known as the Distributed Reputation System and operates in a similar
manner to eBay. Broker Nodes are like eBay sellers and Web Nodes/Storage Users are like
eBay buyers. Web Nodes/Storage Users will only conduct transactions with the highest
reputation Broker Nodes that they can find. The Broker Node selection algorithm considers
other criteria such as network latency, traffic constraints, and Protocol prohibitions (e.g.
Storage Users cannot use the same Broker Node for both the upload and verification
processes). Despite these separate criteria, a relatively small range of the highest reputation
Broker Nodes will receive the vast majority of the traffic, and hence Pearl revenue. Therefore it
is critical for Broker Nodes to be honest in order for them to become profitable.

All reputation scores debut at zero. There are no negative reputation scores, or else a malicious
Broker Node could remove it’s negative reputation by generating a brand new cryptographic
identity that debuts at score zero. The flawed strategy of switching reputations to perform
scams is comparable to a rogue eBay seller that keeps generating new accounts. Little to no
attention will be given to these new accounts that have zero reputation. Instead, the honest
sellers with high reputation will get the vast majority of the business.

From a score of zero, honest Broker Nodes make slow and gradual progress by granting Web
Nodes and Storage Users with access to the Tangle. Genuine access to the Tangle is verifiable
and fault tolerant, by referencing more reputable Broker Nodes to confirm that the real Tangle is
being accessed. When an honest Broker Node gathers enough initial reputation it begins to
receive requests from Web Nodes/Storage Users for performing value based transactions
(burying and claiming Pearls). They will initially be assigned as the Beta Node since Beta Nodes
handle less Pearl value. If the value based transactions are performed correctly, then the
Broker Node’s reputation will begin to increase exponentially. In turn, this would cause more
Web Nodes/Storage Users to request it for value based transactions. Dishonest Broker Nodes
will seldom reach the exponential reputation boost ramp.

Each Broker Node’s identity is based off of a generated PGP key, which must be kept secret. If
the PGP key where to be leaked it would quickly degrade the Node’s reputation (and future
revenue prospects) because malicious actors would quickly use it for short term gain. A Broker
Node’s ability to safeguard their PGP keys precedes and confirms their ability to safeguard the
treasure coordinates of a Data Map and the private seed keys of treasure.

Broker Nodes and Web Nodes/Storage Users agree to perform a value based transaction after
negotiating two terms: a minimal state of the Tangle and a minimal state of the Blockchain. The
minimal state of a ledger defines the minimum scope of transactions that should exist after the
contract is successfully executed and before the contractual deadline. A Storage User’s client
defines all of the branch and trunk transactions for each SHA256 hash of the Data Map as the
minimum scope of what the Tangle should contain. In response the Broker Node sets the
minimum scope of the Blockchain to contain a transfer of Pearls to an address that it controls.

oyster.ws/discuss Page � of �17 18

https://oyster.ws/discuss
https://en.wikipedia.org/wiki/EBay
https://en.wikipedia.org/wiki/Pretty_Good_Privacy

If the proposed contract conforms with the Oyster Protocol and the environmental context of
both parties, then both parties digitally sign the contract with their PGP signatures.

Broker Nodes always install Data Maps in pairs whilst racing each other to embed the most
Pearls. In the contract, each Node is assigned a branch/trunk designation by the Storage
User’s client. Once the Data Map installation is complete the observing Web Nodes can
estimate the performance of each Broker Node by comparing the trunk/branch designations
that were defined in the contract with the actual trunks and branches that were referenced on
the Tangle. Therefore there is unanimous agreement amongst participants of the Distributed
Reputation System for who performed the best. The Broker Node that performed the majority
Proof of Work receives a reputation score promotion, whilst the Broker Node that performed
the minority Proof of Work either gets no reputation change or a demotion (depending on the
degree of performance). Therefore it is in a Broker Node’s long term interest (concerning
revenue generation) to perform the Proof of Work as quickly as possible. This economic
pressure ensures a fast and efficient experience for the Storage User to upload a file.

Broker Nodes are able to offset the Proof of Work burden to Web Nodes that want to purchase
Genesis Hashes or Web Node identities. Therefore a Broker Node with a strong reputation can
typically install the Data Map faster because it has more Exchange Sequences occurring with
more Web Nodes, therefore offsetting more of the branch/trunk Proof of Work designations to
them. If a zero or near-zero amount of branch/trunk designations from the signed contract
match with the Tangle after the contract deadline, then this will be considered a defection and
the Broker Node’s reputation will be severely demoted.

When a Web Node needs to unlock discovered treasure, it defines in the contract the minimal
state of the Blockchain. The minimal state defines that the Pearls from the treasure address
should be claimed at the Oyster Contract for the Website Owner’s Ethereum address. No
minimal state of the Tangle is defined for this contract. If the Broker Node agrees with the
terms, it digitally signs the agreement with it’s PGP keys. Only once the Web Node receives the
signed copy of the contract will it send the private seed key of the treasure to the Broker Node.
If the minimal Blockchain state has not been fulfilled before the contractual deadline, then the
Web Node notifies other Distributed Reputation System participants of the failure by quoting
the signed contract. Therefore the mesh-net of Web Nodes gradually build consensus that the
Broker Node did not perform the task it was meant to, therefore demoting it’s reputation and
future income prospects.

Conclusion

The Oyster Protocol is designed to solve revenue generation, anonymous and accessible
storage, and decentralized application development and deployment. In the same way that the
Ethereum Blockchain provides a straightforward framework for token creation, the Oyster
Protocol provides a straightforward framework for accessing a decentralized mesh network.

Web Nodes are everyday computers, smartphones, cars, fridges - anything with a modern web
browser. They communicate with each other directly, only needing occasional connection
brokerage from Broker Nodes. They automatically choose neighbors that have lower latencies
over time, leading to an overall optimized Node topology. Extensions can be built in Javascript,
a popular and easy to use language, therefore developers can gain access to a world-spanning
mesh-net. This creates the perfect breeding ground for decentralized applications to become
easily built and access a capable, latency optimized mesh net.

The Oyster Protocol unlocks the dormant revenue potential of millions of websites, the storage
dilemmas of individuals and corporations, and the mesh-net platform that developers need.

oyster.ws/discuss Page � of �18 18

https://oyster.ws/discuss

	Introduction
	Mechanics of the Tangle
	Initial File Storage on the Tangle
	Burying Pearls with Broker Nodes
	Treasure Hunting for Oyster Pearls
	Web Node and Broker Node Collaboration
	Web Node to Web Node Interaction
	Content Consumption Entitlement
	Oyster Pearl Token Functionality
	File Verification and Retrieval
	Distributed Reputation System
	Conclusion

