
Background

Bitcoin is Decentralized Cash
The definition of decentralized cash is a money system that lacks a central authority to approve 
transactions. Arguably the first fully viable decentralized cash is Bitcoin (ticker symbol BTC), 
launched in 2009 by one or several individuals working under the potentially pseudonymous moniker 
Satoshi Nakamoto. The Bitcoin protocol serves as a model for every decentralized money system 
currently in use. For this reason, in lieu of saying “Breakout Chain”, this document makes many 
references to “Bitcoin” as a shorthand for “the Bitcoin protocol upon which Breakout Coin is based”. 
This usage is meant not only to save space, but to give credit to the Bitcoin creators where appropriate.

Ethereum is a Decentralized Computing Platform
Ethereum is a highly experimental decentralized computing platform invented by Vitalik Buterin. 
Ethereum extends Bitcoin by offering Turing complete scripting (scripts are simply short computer 
programs). Turing completeness is the ability to simulate a Turing machine, which is a hypothetical 
machine consisting of an instruction processor and an infinitely long memory tape that can seek 
forwards and backwards. This esoteric sounding definition can be thought of (perhaps imprecisely) as 
describing a machine that can execute any logic accessible to computers. Turing completeness requires 
the ability for a computer program to loop one or more times through the same set of instructions, in a 
process known as unbound recursion.

Turing completeness endows Ethereum scripting with tremendous power to execute many kinds of 
contracts that represent fiducial relationships between people. These types of contracts are often called 
smart contracts to reflect the fact that the computer program can execute the terms of the contract, 
presumably replacing human intelligence. Even decentralized autonomous organizations (DAOs) – 
that work like companies – have been launched on the Ethereum platform. DAOs are also known as 
decentralized autonomous corporations (DACs) because it is possible for people to buy shares in these 
organizations, with ownership being represented on Ethereum.

With Ethereum’s Turing complete power comes one critical burden known as the halting problem, 
which is the general inability to determine in advance whether a computer program will complete in a 
finite amount of time. In other words, the only way to know if a Turing complete program will finish is 
by running the program. The halting problem means that the execution of programs in a Turing 
complete programming language must have controls in place that terminate execution even if the 
program itself has not completed. Ethereum uses its native currency, ETH, as a form of “gas” for this 
control. Each program is supplied with gas money and once the program runs out of gas, execution is 
terminated. If the program did not complete successfully, the gas money is forfeited as a fee and, except
for payment of the fee, the state of the Ethereum computing platform remains unchanged, as if the 



computation had never happened.

Another challenge with Ethereum is that it may not be a viable system when the frequency of 
transactions and scripts increases beyond a threshold. This problem is known as the scalability problem
and effects all decentralized cash systems. This problem is especially severe for Ethereum because each
script affects global state of the system. This means that Ethereum scripts must have a strict ordering 
(script X must finish executing before script Y can start) so that the state of the system is known with 
certainty for the execution of every script.

Ethereum’s strict ordering precludes the ability to run more than one script at the same time, a 
technique called concurrency. To see how ordering precludes concurrency, consider what would 
happen if all of Ethereum’s activity were split into two sets A and B, termed shards. In this hypothetical
example, the individuals who run shard A take with them half of the ETH money supply to be used for 
gas while the individuals who run shard B take the other half. Scripts from both shards are executed 
concurrently as long as (1) crosstalk between shards is prevented such that activities from shard A do 
not require input from shard B and vice versa, and (2) eventually the two shards fuse so that ETH 
money can be used as a payment system for the entire Ethereum platform.

While it is fairly trivial to prevent crosstalk, the real (and perhaps insoluble) problem is that it is 
impossible to fuse shards without members of each shard fully validating the other shard. The reason 
for validation is to ensure that the ETH that ends up in the fusion has not been spent as gas in either of 
shards. This need for validation destroys any benefits of concurrency.

Breakout Chain Proposes Decentralized Computing with 
Concurrency

Proposed Computing Platform

To address the scalability and halting problems faced by Ethereum, Breakout Chain proposes a Turing 
complete scripting engine that uses a different control mechanism from Ethereum. Instead of 
Ethereum's approach of allowing each script to run to completion before deciding whether it can 
modify the state of the computing platform, Breakout Chain will divide execution of contracts into 
segments. These segments are restricted from recursing except when users push execution through 
loops by submitting a transaction. These control points mean that scripts can be filtered for length and 
complexity without the need to execute them, allowing for greater scalability.

Although this mechanism may appear cumbersome at first sight, I will demonstrate through an example
of crop insurance that control points are natural places at which actors in a contract would make 
transactions. To see this, imagine the recursion involved in a monthly subscription represented as a 
smart contract. Each loop through the contract would be initiated by a payment. In fact, because the 
contract mediates a benefit in exchange for payment, it is desirable to halt the execution of the contract 
until payment is made. This simple principle forms the foundation of the Breakout Chain computing 
platform, and allows the platform to have properties that make it amenable to scaling through 
concurrency.



For this reason, the proposed Breakout Chain protocol permits shards through the use of pegged side 
chains as described by Adam Back, et al. Pegged side chains are shards wherein money from the main 
shard (also called the main chain) is locked and then apportioned to a separate shard (the side chain). 
The money can be used in the side chain and until it is destroyed while concomitantly unlocking the 
money on the main chain. Pegged side chains require both the main chain and side chains to have 
properties that make them amenable to concurrency because the side chain must run concurrently with 
the main chain.

Existing Features and Innovations

Although Breakout Chain will not have the Turing complete scripting engine at launch, it already 
incorporates a number of new features that will be described in detail below. These features include

• Multicurrencies – multiple currencies carried on a single chain, each currency having a full set 
of features available to it, like multi-signature transactions, locked transaction times, and 
sophisticated scripting

• Multicurrency Hybrid PoW/PoS – a unique security mechanism where currency A is rewarded 
to secure a chain using Proof-of-Work (PoW, described below) and currency B is rewarded to 
secure a chain using Proof-of-Stake (PoS, also described below)

• Currency Interrelationships – Proof-of-Stake for currency C is rewarded with currency D

• Breakout Gravity Wave – a novel difficulty algorithm derived from Dark Gravity Wave that 
throttles block creation (a block is a group of transactions bundled as a single unit of data, 
similar to a ledger sheet)

• Atomic Currencies – currencies that are indivisible beyond whole units, making it possible to 
represent real world fungible assets that can't be divided, like frequent flyer miles or loyalty 
points

• Delegated Fees – the ability to send currency A but pay for the transaction in currency B

• Fee Scavenging – the ability for transaction fee collection to be deferred until a Proof-of-Work 
claims the fee

• Immalleable Transactions – transactions protected against changes to their transaction IDs, 
addressing a current vulnerability in bitcoin

• Colored Coins – currencies with only one unit that is indivisible, a proof of concept for which 
has been incorporated into Breakout Chain in the form of a deck of cards

• Exchange Friendliness – exchanges can add any currency supported by Breakout Chain in 
several seconds by modifying only one line in the configuration file

Several other features derived from other decentralized currencies have also been incorporated into 
Breakout Chain, including a full-featured graphical wallet for several platforms, free-form transaction 
metadata, stealth addresses, and encrypted transactions comments that can only be read by sender and 



receiver.

Concepts
Rather than present a complete history of electronic money systems as background, the first part of this 
white paper reviews several essential aspects of existing payment systems. Knowledge of these topics 
is important for understanding novel aspects (both existing and proposed) of the Breakout Chain 
protocol.

Decentralized Ledgers
The essence of a ledger is simply a table of account credits and debits. Ledgers have starting balances, 
then current balances can be tallied simply by adding all credits (receipts) and subtracting all debits 
(payments). An example is the following table for two accounts, Alice and Bob:

Table 1: Example of a Simple Ledger Sheet

Alice Bob

Memo Credit Debit Balance Credit Debit Balance

Starting $0 $0

Alice Deposit $100 $100 $0

Bob Deposit $100 $2 $2

Alice pays Bob $10 $90 $10 $12

Bob pays Alice $11 $101 $11 $1

This example demonstrates several aspects of a typical ledger. First, for any internal transfer, the sum 
of all credits is equal to the sum of all debits. For example, when Alice pays Bob, the debits are 10 and 
the credits are 10. This means that internally, ledgers adhere to the principle of conservation of money. 
Notice that all entries are not internal transfers. One entry, Alice's initial deposit, was an external 
transfer that added money to the ledger.

Each line of a ledger can have a pictorial representation, where the ledger itself could be considered a 
middleman, or payment processor, that mediates exchanges. Figure 1 depicts the second transaction in 
the ledger above, where Alice pays Bob $10.00.



Figure 1. Alice sends $10 to Bob. This transaction can be 
imagined as one where a Alice creates an input (debit) from 
her account and an output (credit) to Bob's account.

The reason for placing the payment processor as a mediator of the transaction is to introduce a visual 
framework for the concept of inputs and outputs. Namely, the payment processor is placed visually in 
the middle to establish a perspective for what is “in” and what is “out”.  Roughly, an input can be 
imagined as a debit from an account while an output can be imagined as a credit. In this example, Alice
created an input of $10 that got debited from her account. By transferring the money to Bob, she also 
created an output of $10 that got credited to Bob's account.

In this framework, Alice had to perform some operations to create the input and output, so we could say
that the process she followed adhered to a particular input/output mechanism. This terminology 
communicates that some computational machine does Alice's bidding, and within this machine is the 
mechanism to process the inputs and outputs. This computational machine is given the name “payment 
processor”.

Traditional ledgers and some distributed ledgers like Ethereum, Nxt, Counterparty, and BitShares 
explicitly pool all of an account's funds to a single balance at every entry, similar to what is depicted in 
Table 1. For the sake of convenience, these type of ledgers will be termed herein as state ledgers. In 
state ledgers, an account's funds are represented as a single number, which is the balance. In a sense, an
account's balance is change from a previous transaction that used all of the previous balance as an 
input. Figure 2 depicts change represented as an output. In the context of the ledger in Table 1, this 
change output becomes Alice's balance.

Figure 2. A state ledger implicitly makes change. In this 
transaction, Alice begins with a $100 input (her previous 
balance) and sends a $10 output to Bob, which is a credit to 
his account. The transaction is balanced with an implicit 
change output that in this case becomes Alice's new balance.

Having established the concept of inputs and outputs and their relation to ledger entries, it is now 
possible to understand the specific needs of a decentralized ledger, such as that represented by Bitcoin. 
First, what is a decentralized ledger? A decentralized ledger is one where copies of it are maintained by 
many different parties separated by distance. Additionally, the different parties potentially have 
conflicting interests. The integrity of a decentralized ledger depends on each copy of the ledger being 
updated in exactly the same way.



An important requirement for a decentralized ledger is that updates to it must be synchronized. That is, 
not only must the copies be updated in exactly the same way, these updates must occur close enough in 
time such that any copy can be relied upon to faithfully report an account's balance at any moment.

A second requirement of a decentralized ledger is that account holders need to prove that they are 
authorized to spend funds, or more precisely, prove that they own the account to which funds were sent.
With a centralized ledger (like a bank uses), this proof might take the form of signing a check, using a 
debit card with pin, or presenting an ID at a teller.

With decentralized ledgers, a different form of proof, called a cryptographic signature, is required. The
cryptographic signature is produced by a computer program that has access to the spending account's 
secret information that identifies the account uniquely. To spend an input, the input is signed via the 
cryptographic signature.

A cryptographic signature can be quite complicated as it may need to provide a proof in multiple parts. 
Examples might be that an input requires that two or more parties must both sign it (multi-signatures), 
or that the spender must prove knowledge of some other information aside from the account's 
identifying secret. The technical details of signatures and multi-part proofs are quite elaborate and are 
beyond the scope of this white paper, although it helps if the reader appreciates the power behind 
complex spending requirements like multi-signatures. A typical use of multi-signatures, for example, is 
a 2-of-2 multi-signature that requires two different people to approve spending funds.

The combined requirement of synchrony and potentially complicated proofs of spending authority (the 
cryptographic signature) imposes constraints on decentralized ledgers. These constraints mean that is 
often not most efficient to combine of all of an account's inputs (credits) into a single spendable unit 
that most people think of as a balance. Using multi-signatures as an example, it is obvious that if two 
different inputs require two different sets of signatures, they can not be spent as a combined unit. In 
other words, the first input may need multi-signature authorization and the second input may only need 
single-signature authorization. Therefore, it is not sensible to combine them into a single balance upon 
receipt. Instead, a more efficient approach is to wait to combine inputs until they are spent, signing 
only those needed at the time.

In short, inputs are treated as discrete units that are signed independently by the spender. In cases where
all of a spender's inputs are smaller than a given payment, the spend will combine inputs to produce the
payment. Figure 3 illustrates combined inputs.

Figure 3. Inputs are combined to cover a spend larger than
any single input. In this transaction, Bob pays Alice $11. Bob 
only has inputs of $10 and $2 available, so he combines them 
and then makes an $11 output to Alice and a $1 output to 
himself as change.



To distinguish state ledgers from ledgers that treat inputs as discrete units, this white paper will refer to 
the latter as UTXO ledgers. The acryonym UTXO stands for “unspent transaction output”, a phrase 
that describes a transaction output before it referenced by an input that is signed and spent.

State ledgers are fundamentally different from UTXO ledgers in that state ledgers require strict 
ordering of transactions while UTXO ledgers do not. The reason state ledgers require a strict ordering 
of transactions is because it is impossible for an account to have a negative balance. For example, 
assume that Alice has a balance of $20 and receives a deposit of $10 then spends $25. This set of 
transactions would leave her with $5. But imagine that a transaction processor receives the spend first, 
meaning her account would have a balance of $(5), invalidating the spend. If Alice’s account is on a 
decentralized ledger, she could walk away from her negative balance without any repercussions.

UTXO ledgers, on the other hand, are ordered by the input/output mechanism. In the example above, 
Alice might receive output A as a deposit and then spend output B. Output B points to output A as one 
of its inputs. If a network participant receives notification of Alice’s spend with output B, the 
participant will know to wait some reasonable time for output A because it has been referenced by 
output B.

Fees
Processing payments requires computational resources to validate and maintain a complete history of 
transactions, which means that it is desirable for users to pay fees. In addition to compensating the 
individuals who provide payment processing resources, fees ensure that users do not abuse those 
resources by creating too many transactions for the payment processor to handle. Although centralized 
payment processors like banks are able to automatically deduct a service fee each month from user 
accounts, decentralized payment processors can not deduct automatic payments. The reason is that 
account holders must specifically sign inputs to spend them and any payment transaction, like a fee, is 
a spend. Thus, fees paid using a decentralized ledger are taken for every transaction (even though these 
fees are generally very small). Figure 4 shows a transaction (not appearing in the ledger in Table 1) 
with a fee.

Figure 4. Fees are paid by leaving the appropriate 
amount of their inputs unclaimed. In this transaction, 
Bob will pay Alice $21. Bob only has inputs of $10 and 
$20, so he combines them and creates an output of $21 
to Alice. $9 is left over, but Bob needs to pay a $1 fee, 
so he makes an output of $8 to himself. He does not 
specify where the $1 fee goes (indicated by gray). 
Instead, the payment processor will see that the $1 is 
unclaimed and claim it as a fee. The output transaction 
for the fee, therefore, is created by the processor and not
by the spender (Bob).



Figure 4 illustrates that a decentralized ledger conserves money in that any (generally purposefully) 
unclaimed funds from a transaction may be claimed by an agent of the payment processor.

The Blockchain
The structure of a traditional ledger is presented in Table 1. The layout is intuitive. Each account has a 
debit column, a credit column, and a balance column. The ledger grows by one row with each new 
transaction. Traditional ledgers are rectified upon each internal transfer by ensuring that all the debits 
equal all the credits for the transaction.

Because of the potential asynchrony that accompanies decentralization, Bitcoin was designed with a 
different structure from traditional ledgers. The Bitcoin ledger is not continuous series of rows. Instead,
it is divided into sets of transactions called blocks. Each block can hold many transactions wherein 
each transaction is composed of inputs and outputs. The first transaction of a block generally includes a
block reward, a special output that increases the money supply and is rewarded to the individual who 
processed the block of transactions. The first transaction can also include fees if any are claimed by the 
processing individual. After this first transaction, called the coinbase transaction, are transfers 
authored by account holders. These are the types of transfers depicted in Figures 1-4 above.

Figure 5. Blocks contain an array of 
transactions, called vtx. The first transaction in 
a block is called the coinbase transaction. Every 
transaction holds an array of inputs called vin 
and an array of outputs called vout. Notice that 
fees are paid in non-coinbase transactions but 
collected in the coinbase transaction as a fee 
output. Also, the coinbase transaction creates 
new coins, so does not have any inputs. 
Technically speaking, the input array is filled 
with one empty input as a placeholder to indicate
that the coinbase transaction is correctly formed.
Each transaction has record of its own identifier, 
called a transaction ID, commonly abbreviated 
“TxID”.

Figure 5 illustrates a couple of important points. First each transaction stores a record of its own 
identifier called a transaction ID (TxID). Each TxID is unique. Second both the inputs and outputs for 
each transaction are numbered by their index within the array (idiosyncratically beginning with 0). 
Because TxIDs are unique to the blockchain and outputs have unique array indices, every output can be
identified by a combination of its TxID and array index.

In addition to an array of transactions, blocks have other information, one of which is a very long 



number, called a block hash, that identifies the block. Block hashes are expressed almost exclusively as
hexadecimal numbers, meaning the number system has 16 digits from 0 to 9 then a to f, instead of just 
0 to 9. An example block hash is:

000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f

Although this hash may not look like a number, it is simply hexadecimal for the big number

10628944869218562084050143519444549580389464591454674019345556079

Block hashes will often have several leading zeros, which is simply a formatting convention to make 
them exactly 64 characters long.

Each block is not only identified by a block hash, but also contains a record of the hash of the block 
that came immediately previous. This record is often referred to as a pointer to the previous block. 
These pointers link blocks together into a chain, giving motivation for the name “blockchain”.

Figure 6. The blockchain is a series of blocks of transaction linked by pointers to the previous 
block hash. The strings “aaa”, “bbb”, “ccc”, “ddd” represent block hashes. Each block is identified by
and contains a record of its own hash (“Block Hash”). Each block also contains the hash of the 
previous block (“Prev Block Hash”), that serves to link blocks into a chain.

Inputs and Outputs
At the heart of blockchain transactions are inputs and outputs. Outputs are simple data structures that 
have three parts: (1) a destination with spending requirements, (2) the amount to transfer to the 
recipient. 

Figure 7. An output is a data structure with records
only for the destination and an amount to send. The
destination is typically simply an address, but could 
specify other spending requirements. An output is 
referred to as “CTxOut” in the computer code.

Inputs are slightly more complicated because they must contain proof that the spender has the right to 
spend the funds. This proof is generally called a signature. In addition to this proof, an input must 
reference the previous output that is being spent. This reference takes the form of a TxID and an array 
index. Figure 8 illustrates how an input references the previous output.



Figure 8. An input is composed of a signature (proof of authority to spend funds) and a two-part
reference to the previous output that the input spends. In this example the previous output belongs 
to the transaction with a TxID starting “c552e7b58...” (blue) and having array index 0 (blue) in 
vout. The full data structure of the transaction is not shown. For example, all transactions will have an 
array of inputs called “vin”.

Blockchain Security

The Cryptographic Hash

Central to blockchain security is the cryptographic hash, or “hash” for short. A hash is produced by a 
function (a block of computer code in practice) that takes a string (sequence of characters) as input and
returns a very large unpredictable number as an output. In this context, “unpredictable” means that the 
only way to know the hash of a given string is to pass this string to the hash function and calculate the 
result. The cryptographic hash used extensively for decentralized ledgers is known as SHA256d.

To get a feel for what cryptographic hash functions do, consider the quote “I believe that banking 
institutions are more dangerous to our liberties than standing armies” by Thomas Jefferson, one of 
America's founding fathers, author of the Declaration of Independence, third U.S. President, and 
probably America's most revered patriot. The SHA256d hash (expressed as a hexadecimal number) of 
Jefferson's phrase is:

eaeaebf2f52b0ae9235ca3709bf2accd1acc15ff295762a35997e28e7ac35773

Aside from unpredictability, cryptographic hash functions have two other important properties. The 
first property is that it is practically impossible (within the limits of all resources available to humanity)
to find two strings that will produce the same hash. The second property is that it is impossible to 
ascertain the string that produced the hash with any confidence. In other words, there is no function that
could take a hash and return a string that would produce that hash without brute force trial and error. To
illustrate this latter property, imagine Jefferson's quote if he had ended the sentence with “armies” and 
put a period after it. The string would be “I believe that banking institutions are more dangerous to our 
liberties than standing armies.” This means the period would go into the hash function as well. The 
SHA256d hash of this new phrase is:

72ed6a2be299ae41c09c681cca5d1093175b73d5e146a24bee2b4f3b638eeb97



Inspection of this latter hash reveals that it has no relation to the hash of the original phrase, despite the 
two phrases' differing by only one character, the sentence-ending period.

The properties of cryptographic hashes mean that they make very good building blocks for designing 
computationally difficult problems. For example, one problem might be to determine a string one 
would need to append to the end of Jefferson's quote to make the first hexadecimal digit of the 
SHA256d hash into a zero (“0”). Because of  the cryptographic properties of SHA256d, the only way 
to work this problem is by trial and error. For the curious, the resulting string is “I believe that banking 
institutions are more dangerous to our liberties than standing armies5” (appending a “5” to the original
quote), and the SHA256d hash is:

053e11f72f538d15e84ec15ba395c7b755cc85cfa6e4e3e29af446e04fc3ca9a

Because there are 16 possibilities for each hexadecimal digit (“0” to “9” plus “a” to “f”), converting 
each successive digit to a zero requires, on average, 16 times more effort than converting the previous 
digit. For example if it takes 1 unit of computational work, on average, to convert the first digit to zero, 
it will take 16 units of effort, on average, to convert the first two digits to zero. The resulting hash 
would be “00” with 62 hexadecimal digits following. To convert the first eight digits to zero (meaning 
a hash that starts “00000000”) would take, on average 268,435,456 units of effort. That is, it is over 
268 million times harder to find a SHA256d hash with 8 zeros at its start than with just one zero at its 
start.

Although this example problem of converting starting digits to zeros seems pedantic, it is 
fundamentally the cryptographic “puzzle” that lies at the heart of blockchain security.

Proof-of-Work

What is the nature of a “transaction processor” for a decentralized ledger and what ensures that they act
honestly? The activity of a transaction processor boils down to signing blocks that all members of the 
network accept into their copy of the blockchain.

Transaction processors demonstrate their authority by solving what is essentially the problem just 
described. In simple terms, the problem is to turn all of the block data (transactions, time stamp, etc) 
into one long string, then append a number to it (called a nonce), take the cryptographic hash and see if
the hash has the requisite number of “0”s at the front. If not enough “0”s are present, then the nonce is 
incremented and a new hash is taken. The need for trial and error means that the transaction processor 
has proven a quantifiable amount of work, earning the right to sign the block and claim the block 
reward. This process of trying to find a block hash with enough “0”s is called mining.

Importantly, anyone can join the race to find a nonce that produces the requisite number of zeros, 
making the act of becoming a transaction processor competitive. The work investment of the eventual 
winner provides the incentive to act honestly, meaning that winners will faithfully validate transaction 
that they include in the block they sign. Moreover, to maintain the best value for the reward they claim,
when they do not win the mining race, miners will have incentive to accept the blocks of those who do 
win the reace.



This scheme of blockchain security is called proof-of-work (PoW). The central concept of PoW is that 
it is not the act of signing a block but the proven work that earns a reward. From the perspective of the 
block signer, the signature is merely a necessary formality to prove one's identity and claim the reward. 
From the perspective of the network, the signature serves the important function of certifying the block 
so that others accept the block into their copies of the blockchain. The block shown in Figure 5 is a 
PoW block.

Proof-of-Stake

PoW is not the only way to prove eligibility to sign a block. In some systems of blockchain security, the
requirement for work is replaced with the requirement that one holds coin. In this type of system, called
proof-of-stake (PoS) those who have greater ownership have an easier time trying nonces because the 
number of “0”s is inversely proportional to the amount of stake. To prevent the largest holder from 
signing every block, coin is considered to have an age, which resets when it is sent or used as stake. To 
be used as stake, coin must have a minimum age. This means that if the largest holder uses all their 
stake to easily sign a block, this holder must wait until their stake ages, giving others a chance to sign a 
block. A PoS system is therefore competitive, but the competition is overwhelmingly dominated by the 
amount of stake one owns and not the amount of work one is capable of producing.

To prove stake, the staker (one who stakes coins) effectively sends coins to themselves. Because 
sending requires a signature, the signature is proof of the stake. The sending transaction also serves to 
mark the time at which the age of the coin (coin-age) resets. In PoS, this staking transaction is called 
coinstake and serves the same purpose as a coinbase transaction in that block rewards are claimed 
therein. For example, if Alice stakes 100 coins to claim a 10 coin block reward, then Alice would create
stake inputs worth 100 coins and outputs, called stake coinbase, worth 110 coins. The result is that in 
PoS blocks, the coinbase transaction still comes first but is empty (marking the block as a PoS block) 
and the staking transaction is second. A PoS block similar to those from the cryptocurrency Peercoin is 
shown in Figure 9.

Figure 9. Peercoin-like proof-of-stake blocks 
have an extra transaction known as coinstake. 
These proof-of-stake blocks are marked with 
empty coinbase inputs and outputs and an empty 
first coinstake output. Spending transactions begin
with the third transaction in vtx. For all 
transactions, the input and output sets, called vin 
and vout, respectively, are never empty. These sets
will at least contain one member. If these 
members are used as markers, the members may 
be empty. The total of the stake coinbase outputs 
are are equal to the stake inputs plus the block 
reward.



In Peercion and many other proof-of-stake cryptocurrencies, stakers are not permitted to claim 
transaction fees. This does not mean that senders do not need to pay fees. It means that the fees are 
never claimed and disappear. In this situation, fees are said to “go to the network”, which means that 
when the fees disappear it reduces the money supply, presumably making the rest of the money supply 
just a little more valuable. More often than not, this reduction in the coin supply is more than offset by 
block rewards.

All decentralized ledgers have a challenge wherein it is possible for two different miners or stakers to 
produce two blocks that link to the same earlier block. This situation represents a loss of consensus 
called a fork, shown in Figure 10.

Figure 10. A fork occurs when two 
otherwise valid blocks are produced that 
both point to the same previous block. 
Both blocks ccc and ddd point back to 
block bbb as their immediate predecessor 
in a situation called a fork. Forks represent a
loss of consensus until one side of the fork 
grows into the longest chain.

Forks happen with regularity (and are just as readily resolved through the consensus mechanism) for all
decentralized ledgers. However, for PoS, forks are theoretically very problematic because a staker can 
attempt to add blocks to both sides of a fork simultaneously, further contributing to the loss of 
consensus. This possibility for exacerbated loss of consensus is often referred to as the nothing-at-
stake problem. Because stake is effectively reproduced on both sides of a fork, it requires no resources 
to attempt to stake on both sides. The nothing-at-stake problem is given by many PoW proponents as a 
cardinal reason that PoW is superior to PoS. PoW is immune to the nothing-at-stake problem because it
costs PoW miners proportionally greater resources to mine on multiple sides of a fork simultaneously.

Hybrid Proof-of-Work/Proof-of-Stake

To address the nothing-at-stake problem, many cryptocurrencies, like Peercoin, combine both proof-of-
work and proof-of-stake. The combination aims to addresses several potential issues. For example, 
proof-of-work is theoretically susceptible to a “majority attack” that could occur when a single entity 
controls a majority of the mining capacity that secures a particular coin. Proof-of-stake is potentially 
“centralized” because a single entity could eventually purchase ownership of greater than 50% of the 
money supply. A hybrid system may mitigate these issues. Specifically, a successful majority attack on 
a hybrid PoW/PoS currency would require both ownership of a majority of the money supply and 
control of a majority of the mining capacity.



Hybrid PoW/PoS systems do not have specialized block structures. Instead, PoW and PoS blocks are 
intermingled, typically at about a 1:1 ratio. In other words, a given block in a hybrid PoW/PoS system 
is either a PoW or a PoS block. Typically, hybrid PoW/PoS block puzzles, though identical in design, 
are independent for PoW and PoS. This means that workers attempt to solve one problem while stakers 
attempt to solve a different problem and the two types of blocks are added to the chain more or less 
independently. Despite this idenpendence, all blocks are added to the same chain. For example, a 
sequence of blocks from a hybrid PoW/PoS might be something like:

PoW←PoS←PoS←PoW←PoW←PoS←PoW←PoS←…

with no real limitations on the sequence except an approximate equal probability of the each block's 
being PoW or PoS.

Tokens and Colored Coins
Several cryptocurrency systems support the creation of token currencies that exist along with the 
principal currency of their block chains. The principal currency is the currency in which transaction 
fees are paid and without which the token currencies could not function. Token currencies may be 
thought of as unique currencies that can be created by users. Once created, token currencies are 
essentially independent of the principal currency, except for reliance on the essential functions of 
transaction fees and blockchain security.

Token currencies can be created in most of the cryptocurrency systems that use a state ledger, including
Ethereum, Nxt, Counterparty and BitShares. Except for Ethereum, which allows for tremendous 
flexibility with smart contracts, the ability to stipulate spending requirements for tokens is generally 
somewhat limited. Additionally, sophisticated interaction and interconversion between tokens and the 
principal currency is in general not possible.

One exception is BitShares, which has SmartCoins. SmartCoins are currencies pegged to an external 
(non-blockchain) asset through the use of a price feed. SmartCoins are collateralized in the principal 
currency, fixing the peg on a specific quantity of the external asset. SmartCoins can be converted to the 
principal currency where the conversion rate is determined by the price feed.

Aside from pegged currencies in BitShares, token currencies are typically used to represent real-world 
assets like equity ownership of some enterprise. Different Nxt token currencies (usually called “Nxt 
assets”) have been used extensively to represent shares, where dividends are paid in proportion to one's 
holdings.

Colored coins are traceable coins that have unique identities. The concept of a colored coin is often 
confused with the concept of a token currency, mostly because in some cases they are equivalent. 
However the difference can be understood by examining the various physical representations of 
domestic currencies. For example, each USD dollar bill has printed on it a unique serial number, 
making dollar bills analogous to colored coins. However, a dollar that is in a typical bank account is 
indistinguishable from any other dollar in that account because the representation of any dollar in the 
account is simply the number 1 added to the account balance.



One way that colored coins could be implemented is by the use of token currencies. In this 
implementation, a unit of one currency is converted to a token currency with a fixed money supply. For
example, imagine that one bitcoin is converted to a token with a money supply of 1000, where each 
unit of the token currency is worth 0.001 BTC. Individual units of the token currency could be spent in 
whole units or in fractions thereof.

This system is problematic, at least with regards to using bitcoin, which does not support colored coins 
natively. The problem is that although bitcoin could be converted to a token by destroying the bitcoin, it
is impossible to convert the token back to bitcoin because once destroyed, new bitcoin can only be 
created by mining. Because the colored coin is not convertible to bitcoin, it can easily lose its value. 
One way to solve this problem is known as side chains, which will be discussed later. However, a 
cryptocurrency that natively allows the interconversion of colored coins bypasses the problem 
altogether, as interconversion would thereby be fairly trivial.

Smart Contracts
In the present paper, a smart contract will be defined as “computer code that enforces an agreement 
between two or more parties”. Smart contracts were originally described by Nick Szabo, using the 
vending machine as a primitive example. To introduce the most essential features of a smart contract, 
this paper will use the metaphor of a bubblegum machine (Figure 11), the most basic vending machine 
conceivable. A bubblegum machine accepts money and then allows the user to retrieve bubblegum if 
the correct money is provided. Most bubblegum machines accept money and permit the user to retrieve
bubblegum at the same time (while turning the handle), even though this synchrony is not strictly 
necessary. One could imagine a different type of machine that divided the process into two consecutive 
steps.

Figure 11. A bubblegum machine is a metaphor for the essential 
features of a smart contract. The three steps required by the user to 
obtain bubblegum are to (1) insert money, (2) turn the handle, (3) 
retrieve the gum. The bubblegum machine has an internal mechanism 
that decides whether the user has met the conditions of the contract 
(supplied enough funds in this case). If so, it permits the user to 
retrieve the gum by opening a gate, allowing the gum to fall from the 
hopper to the candy tray. Image attributed to http://sweetclipart.com/, 
modified with labels.

A bubblegum machine is an excellent metaphor for a smart contract because it has well defined 
functions that can be expressed as a concise algorithm:

1. Hold a product securely, making the product inaccessible until certain conditions are met.
2. Await a payment transaction from a user, in this case the insertion of money.
3. Await a collection transaction from the user, in this case turning a handle to retrieve the gum.
4. Permit execution of the transaction in (3) if conditions of the sale (contract) are met.

http://sweetclipart.com/


A bubblegum machine has some extraordinary properties. First, it allows two parties to engage in a 
contract without ever interacting directly. The seller supplied the bubblegum to the hopper and then 
locked the machine. The buyer inserts money and turns a handle. Second, a bubblegum machine has an 
internal mechanism that decides, upon action from the buyer, whether conditions are appropriate to 
allow the transaction to complete. Third, the bubble gum machine is fully passive. It never executes any
action in relation to the transaction. It does not withdraw money from the buyer's account nor does it 
send the money to the seller. It does dispense bubblegum, but that action is initiated (and even fully 
executed) by the user. It's most critical function is to measure whether the correct the amount of money 
has been inserted and, if so, permit the transaction to complete.

A bubblegum machine might be considered an archetype for what I will term a permissive smart 
contract, which means its function is to permit transactions rather than execute them. Permissive 
contracts mirror traditional contracts in that both are passive. For example, the contract that a record 
company has with a musician does not actually pay the musician. Instead, the record company pays the 
musician subject to the terms of the contract. Often, as with the recording contract, traditional contracts
require parties to take certain actions (the musician to record music and the record company to 
compensate the musician). Because the blockchain can not compel action of anyone, the bindings to 
which parties are subject must be reversed for blockchain contracts, often by requiring escrow upfront, 
then permitting the escrow to be withdrawn if the conditions of the contract are satisfied.

Other definitions of smart contracts have been advanced elsewhere, but these definitions include smart 
contract behaviors that are unnecessary, or even impractical. For example, implicit in many definitions 
of “smart contract” is the idea that the contract protocol will execute a transaction. Consider a modified
version of the hedging contract, or contract for difference, as described in the Ethereum white paper. 

1. Wait for party A to input 1000 ether.

2. Wait for party B to input 1000 ether.

3. Record the USD value of 1000 ether, calculated by querying the data feed contract, in storage, 
say this is $x.

4. After 30 days, the contract expires and the protocol sends $x worth of ether (calculated by 
querying the data feed contract again to get the new price) to A and the rest to B.

Although most of this contract is taken verbatim from the Ethereum white paper, the part in bold is 
new. Here the smart contract has, as part of it's protocol, the act of sending coins to A and B. In 
practice, though, it is only necessary for the contract to permit this transaction, not execute it.

At first glance, it may seem as if authority to spend must be vested with the block chain, otherwise one 
of the parties will simply send the totality of the escrow to himself. This necessity can be eliminated by 
using a 2-key multisignature (one key belonging to A and one belonging to B), and the contract re-
specified:

1. Wait for party A to send 1000 ether to the multisignature address.



2. Wait for party B to input 1000 ether to the multisignature address.

3. Record the USD value of 1000 ether, calculated by querying the data feed contract, in storage, 
say this is $x.

4. After 30 days, permit party A to spend $x worth of ether from the multisignature address, and 
permit party B to spend the rest of the multisignature balance.

Permissive Smart Contracts
It is notable that none of the smart contracts described in the Ethereum white paper necessitate any 
capacity for the contract to execute a transaction, even though several contracts therein specify this 
behavior. For example, the crop insurance contract proposed in the Ethereum white paper specifies that,
based on the results of a data feed, the farmer may “automatically receive money”. This implies that the
smart contract protocol executes the send. However, it is possible to have crop insurance where the 
farmer, and not the contract, is responsible for executing the transaction. An outline of the contract 
would be:

1. The insurer and farmer together register a multisignature address with the contract. Each party
has a private key for the public key that they contribute to the multisignature address.

2. The insurance agent sends funds covering all but the farmer’s purchase price.

3. The farmer buys crop insurance by sending money to the multisignature address.

4. After a set duration, the contract permits the farmer to spend (proportional to the size of the 
policy and inversely proportional to rainfall) from the address registered in Step 1. Likewise the
insurer can spend the remaining balance.

This contract is no more complicated than that found in the Ethereum white paper. Both require (1) the 
registration of public keys (the payout address for the Ethereum contract and the escrow address, or 
contract address, for the permissive smart contract), (2) purchase of the insurance, and (3) a transaction
that pays the farmer in the case of drought.

Permissive smart contracts do not require any polling of the chain's state. Instead, state is checked only 
when a transaction is attempted. For example, if the farmer attempts to spend from the registered 
address after his crops received plenty of rain, then the transaction will be invalidated when network 
nodes verify the transaction and check the history of the weather feed.

The absence of polling means that the contract does not burn CPU cycles every block. Polling of chain 
state (e.g. checking whether the contract has matured) undoubtedly still happens, although the farmer is
the entity polling and not the miners as they execute the contract.

Specifying Permissive Smart Contracts: Crop Insurance

It is possible to fully specify a crop insurance contract without the execution of any transaction by the 
protocol itself. The example crop insurance contract in Figure 12 uses a stack-based language called 



contract that models Bitcon's script language. For this reason, it will be easy for readers familiar with 
script to follow the protocol. Also like Bitcoin's script language, the contract data stack is populated 
with byte vectors.

Although the native language of permissive smart contracts is the stack-based language contract, 
higher-level languages .

At the origination of the example crop insurance smart contract, the contract data stack contains 
(starting at the top) the Contract Amount, Expiration Time, Earliest Claim Time, Feed Params, Max 
Total Rain, and Insured Address. Deeper members of the contract data stack are not shown, such as the 
insurer's address. The Expiration Time is the time before which the insured may claim a payout. If the 
Real Total Rain exceeds Max Total Rain, no claim is possible (tested on line 10). For simplicity, Feed 
Params is meant to represent a group of contract data stack members that are taken as arguments to 

GET_FEED_TOTAL. The GET_FEED_TOTAL operator returns the sum of feed observations given a 

feed identifier, interval and sampling frequency, and others, indicated by the Feed Params. A smart 
contract system would have several different operations that retrieve data from feeds. Examples include
GET_FEED_TOTAL, GET_FEED_MEAN, GET_FEED_MEDIAN, and so on. These operations are fine-

grained to minimize the complexity of contracts themselves. For this simple contract, the Contract 
Amount is the maximum payout, and is equal to the total provided as escrow by the insurer and as 
payment by the insured.

When the insurer sets up the contract, the insurer sends escrow funds to the contract address.



Figure 12. A crop insurance contract can be specified as a permissive contract using a stack-
based language. The portion of the contract executed by the insured extends through line 34. Two 
transactions (circled letters) are represented. Transaction A executes through PAUSE at line 2. 
Transaction B executes through PAUSE at line 34. Both transactions terminate with the value 1 at the 
top of the contract data stack, causing the instruction pointers (filled arrows) to move through 
PAUSE, rather than back up to the previous instruction, as described in the text. The state of the 
contract data stack upon completion of the corresponding instruction (open arrows) is given in boxes.
The stack language, called contract, is modeled after Bitcoin's script language, with similar 
instruction names having the same meanings. For example SWAP means to switch positions of the top
two stack members, 2 means to push the value 2 to the stack. Differences in naming include LE (less 
than or equal to) and other tests for inequality. Other new commands (ACCEPT_PAYMENT, 
PUSH_TXTIME, etc.) are explained in the text. This crop insurance contract is purposefully simple 
for the sake of illustration. For example, it makes no provision if the insured does not pay for the 
policy, etc.



The example in Figure 12 introduces several new operators. For example, the operator 

ACCEPT_PAYMENT will invalidate a transaction if the transaction attempts to spend from the contract

address, which is specified when the contract is created. If the transaction does not try to spend from 

the contract address, ACCEPT_PAYMENT checks to see whether the balance of the contract address is 

greater than or equal to the top member of the contract data stack (Contract Amount). The balance is 
calculated from all known transactions that execute the smart contract, including the transaction that 
executes ACCEPT_PAYMENT. If the test succeeds, 1 is placed on the top of the contract data stack, 0 

otherwise. In all cases, ACCEPT_PAYMENT places the input (Contract Amount) at the second position 

of the contract data stack so that the input can be available later if needed.

The PAUSE instruction pops the top member of the contract data stack. If this member is 0, the 

instruction pointer is moved backwards to the instruction immediately prior to PAUSE, otherwise the 

instruction point moves forward to the following instruction. In all cases, execution stops at PAUSE 

and only resumes with a new transaction.

Because contract will support the use of subroutines, PAUSE is a way to achieve recursion and 

therefore a way to achieve Turing completeness of permissive smart contracts. One limitation is that 
each cycle can only be initiated with a new transaction. No single transaction can cause the contract to 
recurse, meaning that the number of operators in a given transaction’s instruction sequence is finite and
easily determined. The mechanism to prevent recursion by a single transaction is simple and can be 
envisioned using pseudocode (Figure 13).

Figure 13. Recursion is prevented within a transaction using the 
call stack. The pseudocode represents three subroutines A(), B(), and
C(). Return addresses after calling each of these functions are main',
B', and C', respectively. When each subroutine is called, a 2-tuple of 
the subroutine address being called (A, B, C) and the return address is 
pushed to the call stack (boxes). Before calling a subroutine, the 
runtime searches the call stack for tuples that have the subroutine’s 
address as the first element. If a duplicate address is found, the 
transaction is invalidated. In the image, the transaction is invalidated at 
A() when called from within C() because the bottommost member of 
the call stack has the address A as the tuple’s first element.

The Transaction Chain

Each permissive smart contract is executed by a chain of transactions (the transaction chain) that has a
strict ordering. This ordering is established by each transaction’s having a pointer to the TxID of the 
previous transaction in the chain. Each permissive smart contract has one and only one transaction 
chain and no transaction may be a part of more than one chain. The transaction chain is therefore a 
linked list similar to the blockchain (where each block links to one and only one previous block). The 
transaction chain does not branch, meaning that when two transactions link to the same previous 
transaction in the chain, they cannot both be valid. When a miner receives two transactions that both 



link to the same previous transaction in the chain, the miner may decide which to include in a block. It 
is therefore up to clients who execute a contract to keep track of network transactions and link to the 
newest of the transaction chain.

Figure 14. Contracts are executed by transaction chains. The transaction chains for two contracts 
(“Contract 1” and “Contract 2”) are represented. The strings “aaa”, “bbb”, “ccc”, “ddd” represent 
TxIDs. Each transaction is identified by and contains a record of its own TxID. Each transaction also 
contains the TxID of the previous transaction in the chain. The original transaction of the chain points 
to no previous transaction, represented by null.

The Data Structures of Permissive Smart Contracts

Permissive contracts can interact with various data structures that belong to the contract itself. For 
example, the amount and time of the current transaction can be obtained using PUSH_TXAMT and 

PUSH_TXTIME, respectively. The current transaction is the transaction that triggers execution of a 

segment of the instruction sequence. It follows that each transaction will trigger execution of some 
segment of the sequence (starting at the beginning or where the last transaction left off) and that 
execution may or may not complete for a particular transaction. The latter is the case, in the crop 

insurance example, if a transaction did not transfer enough funds to advance past ACCEPT_PAYMENT 

instruction followed immediately by PAUSE.

Permissive smart contracts are created with an originating transaction which, like other transactions 
that execute the contract, stores the state of the contract. This storage consists of:

1. The instruction sequence that specifies the contract protocol (Figure 12). For non-originating 
transactions, this sequence is empty because the contract operations are fully specified by the 
originating transaction.

2. The instruction pointer that indicates the first instruction to execute for the next transaction. For 
the originating transaction, this pointer points to the first instruction. In Figure 12, the solid 
arrows are instruction pointers.

3. State of the contract data stack. For the originating transaction, the contract data stack is filled 
with starting values. For non-originating transactions, the state of the contract data stack, as it 
would be after the transaction’s execution, is specified. Only the changes necessary to convert 



the state of contract data stack of the previous transaction to that of the current transaction

4. A pointer to the prior transaction in the contract’s transaction chain. For the originating contract,
this pointer is null. Given this pointer, it is possible to backtrack to the originating transaction to
determine retrieve the instruction sequence and contract address.

5. A transaction data stack. For the originating transaction, the transaction data stack will be 
empty. For non-originating transactions, the transaction data stack will hold additional data that 
can be transferred to the contract data stack using TRANSFER. As the sole argument, 

TRANSFER takes the number of elements from the transaction data stack to transfer. The 

TRANSFER operator removes the elements from the transaction data stack. The TRANSFER 

operator is used  Other than TRANSFER, no operators of contract can be applied to the 

transaction data stack. The transaction data stack allows transactions to supply information to 
the contract such as cryptographic proofs of ownership.

6. State of a call stack. For the originating transaction, the call stack is empty. For non-originating 
transactions the call, the changes necessary to convert the state of the call stack from the 
previous transaction to that of the current transaction.

Elements of Flow Control in Permissive Smart Contracts

One question that may arise when looking at the crop insurance contract in Figure 12 is how the 
contract ensures that actors have the correct authority to execute specific parts of the contract. We can 
see how this works within the IF block. Here, the actor provides a message and signature of that 

message on the transaction data stack and it is used in CHECKSIGVERIFY with the Insured Address. If

CHECKSIGVERIFY fails, the transaction is not valid and the contract state does not change from that 

specified by the preceding transaction in the chain.

Following the check on lines 36-38 whether the insured has claimed a payout, the contract will check 

whether the transaction is executed by the insurer, again using CHECKSIGVERIFY. This part of the 

contract is not shown for brevity.

One thing to note is that smart contracts offer two levels of control. The first is that the contract may 
require proofs different from those required of the transaction script, which could be a pay-to-pubkey-
hash, pay-to-script-hash, and so on. The second level of control is in the transaction script, which 
applies to all transactions, whether they are in a contract transaction chain or not.  

It should be noted that it is not necessary to persistently store the state of IF-ELSE-ENDIF blocks. The

reason is that the blocks subject to IF and ELSE conditionals that fail are never evaluated. Consider 

the following block of code:

1   FALSE
2   IF

3     {block A}



4   ELSE

5     {block B}
6     PAUSE

7     {block C}
8   ENDIF

Here, block A at line 3 is skipped, then block B is executed. Execution is paused at line 6 and the next 

transaction, naïve of the IF-ELSE-ENDIF nesting, begins executing block C at line 7.

To put it simply, whatever instruction at which a transaction begins is de facto part of the execution 

sequence, this includes any instructions immediately following the next ENDIF. Similarly, any 

instruction within an ELSE block that is naïvely encountered will not be executed. This later situation 

can be seen clearly in the following block of code, considering circumstances where execution begins 
naïvely after the PAUSE on line 6. 

1   TRUE
2   IF

3     {block A}
6     PAUSE

5     {block B}
4   ELSE

7     {block C}
8   ENDIF

State in Permissive Smart Contracts

Permissive smart contracts store the contract state information in the transaction itself. For this reason, 
the contract state is known before the transaction is accepted into the blockchain. Also, the miner and 
the contract executor (the party that makes the transaction) must agree on the state of the contract after 
execution. This means that the executor can be assured that the contract state will remain consistent 
with the executor’s expectations.

Ultimately, the party who creates transactions is responsible for determining the state of the permissive 
smart contract and storing this state in the transaction that executes the contract. This is manifestly 
different from how state is managed in the Ethereum blockchain, where determining state and storing it
is the responsibility of the miner. Moreover, permissive smart contracts store contract state at the 
transaction level whereas Ethereum stores state at the block level.

Sidechains in Permissive Smart Contracts

Permissive smart contracts share two fundamental properties with the underlying Bitcoin-based

Multicurrencies
Breakout Chain offers multiple first-class currencies running on a single decentralized UTXO ledger. 
Each currency is fully supported by by the Breakout Chain input/output mechanism. Multicurrency 
support is achieved by a simple extension of outputs where the type of currency is given a numerical 



identifier, termed color, in reference to colored coins.

Figure 15. Multicurrency outputs have a currency 
identifier. The data structure shown is a multicurrency 
output. The currency identifier (color) is 2. Currency 
identifiers range from 1 to 2,147,483,647, meaning that 
Breakout Chain can accommodate over 2 billion different 
currencies.

Having multiple first class currencies on a single block chain allows for novel relationships between 
currencies. One such relationship incorporated into Breakout Chain is that between Breakout Coin 
(BRK) and Breakout Stake (BRX). In this relationship, BRX is staked to earn block rewards in BRK. 
The reason for this relationship is that first coin sale buyers (late 2014) purchased stake and the block 
reward coin as two separate entities.

To enable this type of relationship, the Breakout Chain PoS block structure (Figure 16) significantly 
deviates from the Peercoin PoS block structure (Figure 9).

Figure 16. A Breakout Chain PoS block 
places the stake coinbase output in the 
coinbase transaction. The coinstake inputs 
and outputs are in the second transaction, 
where the sum of the input stake must be 
equal to the sum of the output stake. All new 
coins are placed in the coinbase transaction. 
The coinbase transaction is marked with no 
inputs (empty vin), and the coinstake 
transaction is marked with an empty first 
output. In Breakout Chain, fees are not 
collected in PoS blocks.

The Breakout Chain protocol does not allow fees to be collected in PoS blocks although it does require 
senders to pay a fee. These fees are not lost, however. They can be collected in Breakout Chain PoW 
blocks (Figure 17) in what is known as fee scavenging (Figure 18).

 



Figure 17. A Breakout Chain PoW block 
allows fees of different currencies to be 
collected in the coinbase transaction. Fees
in the currency of the block reward are 
combined with the block reward in the first 
output of the coinbase transaction. Fees for 
other currencies follow. Each currency may 
only appear once in the outputs of the 
coinbase transaction. When payments are in 
a different currency than fees (a situation 
called delegated fees, Figure 19), the fee 
input (green) may be larger than the 
required fee, meaning that the sender will 
write an output for the fee change (green). 
Transaction inputs and outputs are highly 
restricted, limited only to a payment 
currency, and, if different, the fee currency.

If the value of a transaction’s outputs for a given currency is less than the value of that transaction’s 
inputs, the difference is available as fees. This difference is subtracted from the money supply. When a 
PoW miner claims rewards, fee scavenging allows the miner to collect any money not previously 
claimed in an outputs. The available fee for a given currency is calculated by subtracting the current 
money supply from the total stake coinbase (all coins that have ever been created). The miner for a 
PoW block is eligible to claim all available fees, restoring the money supply to the total stake coinbase.
Fee scavenging is illustrated in Figure 18. The purpose of fee scavenging is to add incentive for PoW 
mining.

Figure 18. Fee scavenging restores the 
available money supply of a currency to the 
total stake coinbase. At the end of PoW block 
A, the total stake coinbase for currency XYZ is
equal to its available supply of 10,000 XYZ. 
The transaction in block B (shaded), leaves 1 
XYZ unclaimed as required fees, reducing the 
available supply to 9,999 XYZ. The PoS block
C does not give an opportunity to claim the 1 
XYZ. PoW block D does, however. The miner 
of block D claims the 1 XYZ fee in an output, 
restoring the available supply.



Figure 19. Some currencies have a fee delegate, 
which is a different currency in which fees are 
paid. Two currencies, ABC and XYZ, are 
represented. Bob sends 6 ABC to Alice and takes 
4 ABC change for himself. To pay the fee, Bob 
uses currency XYZ, as required. Bob pays 2 XYZ 
for the fee payment and receives 1 XYZ for the 
fee change, leaving 1 XYZ to be collected by the 
miner of the next PoW block, which could also be 
the block that stores this payment to Alice.

Decentralized Share Issuance and Dividends
Centralized corporations that wish to sell shares without counterparty risk or regulatory influence will 
be able to issue shares using Breakout Chain's permission-based smart contracts (PBSCs). These shares
have the full capability to reward dividends, also without the same risks to the corporation as traditional
securities. Both the process of issuing shares and the process of rewarding dividends is conducted in a 
purely decentralized manner.

Because the paradigm for issuance is permission-based, funds or shares are never sent directly from 
one party to the other. Transactions in the process, therefore, consist entirely of “sends to self” (STS), 
that have precisely defined inputs and outputs.

Issuance
To understand share issuance, it is necessary to be introduced to the concepts of slot and claims.

Slots

A slot is a placeholder for a currency, and can be envisioned as a type of PBSC. This type of contract 
allows users to exchange BRK for the slot currency at the rate specified in the creation for the slot. For 
example a slot might be created for 100,000 shares of currency XYZ at a rate of 1 BRK per XYZ.

A user can then convert BRK to XYZ using a special transaction wherein the inputs are BRK and the 
outputs are XYZ. This conversion will be valid if (1) the transaction destroys sufficient BRK for the 
amount of XYZ produced, and (2) enough XYZ remains from the money supply specified by the slot. 
Fees are collected in BRK.

Claims

A claim is a type of currency that has a defined conversion rate to BRK. Claims are subject to 
conditions of a PBSC. Like any other currency of Breakout multicurrencies, claims are transferable. 
Having value contingent on a PBSC means that claims are a type of financial derivative.

For example, let's assume a user has created a claim in the currency ABC, where ABC is convertible to 



BRK at a rate of 1:1. For the claim, or any part thereof, to be valid, 

Shares are issued in a multi-step process.

1. The issuer creates a slot for a share currency, which has a money supply of S, divisible to up to 8 
decimal places, and (2) a claim currency with the same money supply properties as the share currency. 
The

Runoff

This example with crop insurance illustrates two key building blocks of permissive smart contracts 
(contracts that grant permission only but do not perform automated transactions), which is the ability to
destroy (Step 1) and create (Step 3) money as needed. Notice that the crop insurance contract itself 
neither destroys or creates money. Instead, executing these transactions is the job of the farmer. 
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